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Zusammenfassung

Ziel des Projektes war die Entwicklung eines Cloud-basierten Condition Monitoring Systems 
(CMS). Das CMS kann in komplexen Produktionsanlagen verschiedener Branchen (u.a. in der 
holzverarbeitenden, der Automobil- und der Stahl-verarbeitenden Industrie) eingesetzt werden. 
Durch generische Prozessmodelle und maschinelle Lernverfahren kann es an verschiedene 
Produktionsanlagen und Kunden-spezifische Einsatzszenarien adaptiert werden. Das in dem 
Projekt entwickelte CMS besteht aus einem Modul zur Datenerfassung sowie aus 
selbstlernenden Modulen zur Anomalie-Erkennung und zur Diagnose. Offene wissenschaftliche 
Fragestellungen bei der Umsetzung des CMS ergaben sich hinsichtlich der Skalierung 
existierender selbstlernender Anomalie-Erkennungsverfahren auf komplexe 
Produktionsanlagen sowie die Entwicklung selbstlernender Diagnosemethoden zur 
Identifikation von Fehlerursachen.

Zu Projektbeginn wurden die Anforderungen an ein Cloud-basiertes CMS erfasst und 
dokumentiert. In der ersten Projekthälfte wurden weiterhin die Datenerfassung und die 
Anomalie-Erkennungsverfahren entwickelt. Darauf aufbauend wurde in der zweiten 
Projekthälfte zunächst die Fehlerursachen-Erkennung untersucht. In der letzten Projektphase 
wurden die Entwicklung der Benutzerschnittstellen, die Auslagerung rechenintensiver Prozesse 
in die Cloud und eine systematische Evaluation der entwickelten Methoden durchgeführt.

Durch das Projekt werden insbesondere KMU, denen die Ressourcen für Kunden-individuelle 
Implementierungen und Konfigurationen fehlen, in die Lage versetzt, CMS wirtschaftlich zu 
entwickeln und anzuwenden. 

Das Forschungsziel wurde erreicht.
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1  Gegenüberstellung der durchgeführten Arbeiten und des 

Ergebnisses mit den Zielen

Projektziele 

Übergeordnetes  Ziel  des  Projektes CLArA war es,  ein selbstlernendes CMS für komplexere
Produktionsanlagen und insbesondere auch für  Anlagen des Sondermaschinenbaus zu ent-
wickeln. Das entwickelte System kann sich durch den Einsatz von maschinellen Lernverfahren
automatisch an existierende Anlagen anpassen sowie Anomalien und Fehlerursachen auf der
Grundlage  einer  gelernten  Repräsentation  des  Systemverhaltens  detektieren.  Dies  wird
dadurch  erreicht  werden,  dass  in  einer  Trainingsphase  Analyse-  und  Diagnosemodelle  aus
historischen  Prozessdaten  gelernt  und  während  des  Betriebs  des  CMS  zur  Anomalie-
Erkennung und zur Diagnose von Fehlerursachen verwendet werden (siehe Abbildung 1).

Auf  diese  Weise  wird  es  dem  Anwender  ermöglicht,  das  CMS  ohne  aufwendige
Programmierung und Konfiguration in verschiedenen Anlagen einzusetzen. Dadurch werden die
Entwicklungs- und Inbetriebnahmekosten für CMS erheblich reduziert und es wird insbesondere
ein  wirtschaftlicher  Einsatz  in  kundenspezifischen  Anlagen,  die  nur  in  kleinen  Stückzahlen
produziert  werden,  erreicht.  Im Einzelnen  wurden bei  der  Realisierung  des selbstlernenden
CMS die folgenden Fragestellungen untersucht:

1 Wie  können  Prozessdaten  in  heterogenen  Produktionsanlagen  standardisiert  erfasst
werden?

2 Wie  kann  eine  zuverlässige  Anomalie-Erkennung  in  komplexen  Produktionsanlagen
durchgeführt werden?

3 Wie  können  Fehlerursachen  mittels  eines  selbstlernende  Diagnosemoduls  automatisch
identifiziert werden?

Abbildung 1: Selbstlernendes Condi�on Monitoring System für komplexe 

Produk�onsanlagen: Datenerfassung, Anomalie-Erkennung und Diagnose
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Zur Realisierung des selbstlernenden Condition Monitoring Systems wurden daten-getriebene
Methoden zur Anomalie-Erkennung und zur Identifikation von Fehlerursachen erforscht sowie in
charakteristischen Anwendungsszenarien aus unterschiedlichen Branchen erprobt. 

Arbeitspakete

Die einzelnen Arbeitspakete des Projektes sind in Abbildung 2 dargestellt. 

A

AP 1 und AP 4 umfassen Arbeitsschritte, von denen alle im Projekt entwickelten Komponenten
betroffen  sind.  In  AP  2  und  AP  3  sollen  jeweils  Teilkomponenten  des  in  Abbildung  1
dargestellten CPS realisiert werden. Die Weiternutzung von Ergebnissen zwischen diesen APs
ist in Abbildung 4 in Form von Pfeilen dargestellt. 

Die Ziele, die durchgeführten Arbeiten und die Ergebnisse für die einzelnen Arbeitspakete sind
in den folgenden Abschnitten dargestellt. 

Abbildung 2: Arbeitspakete und Weiternutzung von Ergebnissen
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Ziele

Ziel  dieses Arbeitspakets  war  es, die  Anforderungen  an  das  CMS  und  die  erforderliche
Infrastruktur zu analysieren und zu definieren. Dabei sollten sowohl die Sicht der Anwender des
CMS als auch die Sicht  der Komponenten-Entwickler  und Systemintegratoren berücksichtigt
werden. Als Ergebnis sollte ein Dokument mit (i) Anlagenbeschreibungen, (ii) Anforderungen für
die Einsatzszenarien, (iii) Beschreibungen der Messsignale und Kommunikationsschnittstellen,
(iv) typischen Fehlersituationen sowie Wartungszyklen erstellt werden.

Durchgeführte Arbeiten

In Arbeitspaket 1 wurden die Anforderungen wie geplant mit den Projektpartnern abgestimmt
und in einem Dokument festgehalten. 

Im  Rahmen  der  Analyse  und  Anforderungsdefinition  wurden  drei  Beispielanlagen  für  die
Evaluierung des Condition Monitoring Systems ausgewählt. In der betrachteten Verpackungs-
anlage des Unternehmens Becker wird Karton in vier Prozessschritten zugeschnitten und zur
Verpackung  eines  Produktes  verwendet.  Typische  Sensordaten,  welche  zum  Condition
Monitoring  herangezogen  werden können,  sind die  Signale  von Lichttastern,  Positions-  und
Belegungsmessungen sowie elektrische Leistungsdaten.  Typische Fehlersituationen ergeben
sich  durch  falsch  positionierte  oder  verdrehte  Produkte.  Die  zweite  Beispielanlage  ist  eine
Elektro-Schlacke-Umschmelzanlage  der  Deutschen  Edelstahlwerke,  welche  die  Produktion
hochwertiger Stähle und Sonderlegierung durch das Umschmelzen von Stahlblöcken in einem
Schlackebad ermöglicht. Als typische Fehlersituationen ergeben sich in diesem Anwendungsfall
Druckabfälle,  welche beispielsweise durch Undichtigkeiten oder durch einen unterbrochenen
Argonfluss entstehen und sich negativ auf den Reinheitsgrad des raffinierten Stahls auswirken.
Als  dritter  Anwendungsfall  wurde  ein  Lackaustragungsband  des  Unternehmens  Venjacob
betrachtet.  In  diesem  Anwendungsfall  werden  neben  Messgeräten  für  elektrische
Leistungsdaten  ein  Beschleunigungssensor  sowie  Temperatursensoren  verwendet.  Als
Fehlersituation wurde hier die Abnutzung des Bandes betrachtet.

Erzielte Ergebnisse 

Als  Ergebnis  der  Analyse-  und  Anforderungsspezifikation  wurde  ein  Dokument  mit
Beschreibungen  der  drei  Anlagen  sowie  Anforderungen  an  die  Einsatzszenarien  erstellt,
welches  allen  Interessenten  auf  Anfrage  zur  Verfügung  gestellt  wird.  In  diesem Dokument
werden  weiterhin  die  Messsignale  und  Kommunikationsschnittstellen  beschrieben  sowie
typische  Fehlersituationen  spezifiziert.  Neben  den  drei  ausgewählten  Anwendungsszenarien
wurden  drei  weitere  Datensätze  spezifiziert,  welche  zur  systematischen  Evaluierung  des
Condition Monitoring Systems dienen.

Arbeitspaket 1: Analyse und Anforderungsdefinition
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Ziele 

In  AP  2  sollte  die  für  die  Entwicklung  der  Analyse-  und  Diagnosemethoden  grundlegende
Datenerfassung realisiert werden. Dazu sollten insbesondere die folgenden Prozessdaten der
Beispielanlagen von Becker und Venjakob mittels vorhandener Datenerfassungskomponenten
auf Basis von OPC UA integriert, synchronisiert und gespeichert werden: Daten unmittelbar an
die  Steuerungen  angeschlossener  Sensoren  (mittels  S7/S5-OPC-UA-Server),  Daten  einer
Ventilinsel  mit  OPC  UA  Server,  Profinet-Daten  (mittels  am  Fraunhofer  IOSB  entwickelter
Profinet Datalogger mit OPC UA Schnittellen), Steuerungsdaten (mittels vorhandener OPC UA
Schnittstellen  der  Steuerungen).  Die  bei  der  Datenerfassung  erforderliche  Informations-
modellierung sollte auf das notwendige Minimum beschränkt werden und soweit  möglich auf
der  Basis  vorhandener  OPC  UA  Companion  Standards  erfolgen.  Für  in  dem  Projekt
untersuchte Module und Anlage,  für  die solche Standards insbesondere in Hinblick auf  den
Anwendungsfall  Condition  Monitoring  noch  nicht  existieren  bzw.  sich  als  unzureichend
erweisen,  sollten  eigene  Companion  Standards  definiert  werden  und  in  den
Standardisierungsprozess von OPC UA einfließen. Die Daten aus den einzelnen Datenquellen
sollten unter Verwendung von OPC UA an eine SQL-Datenbank sowie an die Cloud-basierte
Infrastruktur  angebunden  werden.  Sowohl  die  SQL-Datenbank  als  auch  die  Cloud-basierte
Infrastruktur waren am Fraunhofer IOSB bereits zu Projektbeginn vorhanden und verfügen über
die erforderlichen Kommunikationsschnittstellen. Im Rahmen von AP 2 sollten vor dem ersten
Meilenstein  bereits  erste  Testdaten  aufgenommen  werden,  die  in  AP3.1  zur  Algorithmen-
Entwicklung  genutzt  werden  können.  Als  Ergebnis  des  Arbeitspaketes  sollten die  für  die
Umsetzung  des  Projektes  erforderlichen  Datenerfassungskomponenten  mit  geeigneten
Informationsmodellen  installiert  werden.  Die  erfassten  Testdaten  der  Anwendungsszenarien
sollten sich in der SQL-Datenbank und in der Cloud-basierten Infrastruktur befinden.

Durchgeführte Arbeiten

Im  Rahmen  des  zweiten  Arbeitspaketes  wurden  Daten  in  den  drei  Anwendungsfällen
plangemäß erfasst und zur Auswertung gespeichert. Weiterhin wurden zwei Simulationsmodelle
zur  Erzeugung  von  Simulationsdaten  für  die  systematische  Entwicklung  der  Anomalie-
Erkennung erstellt.

Erzielte Ergebnisse

1. Datenerfassungskomponenten

Der  OPC UA Connector dient  dazu,  OPC UA Daten  in  einer  InfluxDB zu  speichern.  Der
Connector läuft in einem Docker Container,  der mit den Verbindungsdaten für den OPC UA
Server  und  die  InfluxDB  konfiguriert  werden  kann.  In  einer  Node-Set  Konfiguration  kann
spezifiziert  werden, dass der OPC UA Connector sich nur für dort  angegebene Knoten des
OPC UA Namensraums registrieren soll. Alternativ ist es möglich, die Änderungen aller OPC
UA Variablen in der Influx DB zu speichern.  

Arbeitspaket 2: Datenerfassung
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Der  InfluxDB  Writer ermöglicht  es,  CSV-Daten  in  der  InfluxDB  abzuspeichern.  Mit  dem
InfluxDB  Reader können  Daten  in  der  InfluxDB  in  Form  von  CSV-Dateien  abgespeichert
werden.

In den exemplarischen Anwendungsfällen der Unternehmen Becker und Venjacob werden die
Daten in Form von Log-Dateien erfasst. Eine solche Log-Datei enthält für jede Signaländerung
eine eigene Zeile, in welcher der Timestamp der Signaländerung (bestehend aus Datum und
Änderung), der Name des geänderten Signals sowie der neue Wert des Signals gespeichert ist.
Der Log-File Konverter erzeugt aus den Log-Dateien jeweils CSV-Dateien, in denen zu einem
Timestamp alle aktuellen Signalwerte gespeichert werden.

2. Simulationsmodelle

Im  Rahmen  des  Projektes  wurden  zwei  Simulationsmodelle  implementiert,  welche  es
ermöglichen, die entwickelten Verfahren zur Anomalie-Erkennung systematische zu evaluieren. 

Tanksystem

Das  entwickelte  Simulationsmodell  für  ein  Tanksystem  ist  in  Abbildung  4 dargestellt.  Der
Simulationsablauf besteht – vereinfacht dargestellt – darin, das zunächst Tank 3 über Tank 1
und  2  befüllt  wird.  Anschließend  werden  die  Flüssigkeiten  vermischt,  erhitzt  und  wieder
abgekühlt. Am Ende des Zyklus wird Tank 3 über Tank 4 geleert. Tank 1 Tank 2 verfügen über
eine eigene Regelung, auf deren Basis die Pumpen angeschaltet werden, sobald ein definierter
Füllstand unterschritten ist. Das entwickelte Simulationsmodell bildet einen typischen hybriden
Prozess mit diskreten Signalen (Schaltsignale für Ventile und Pumpen) sowie kontinuierlichen
Signalen  (z.B.  Temperatur-  und  Füllstandmessungen).  Weiterhin  wurde  ein  Python-Skript
erstellt,  welches  es  ermöglicht,  das  Simulationsmodell  mit  verschiedenen  Parametern
auszuführen und auf diese Weise Testdatensätze zu erzeugen, die in Form von CSV-Dateien
abgespeichert werden. 

Abbildung 3: OPC UA Connector für das entwickelte Condi�on Monitoring System
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Abbildung 4: Simula�onsmodell für ein 4-Tank-System

Transportsysteme

Um die Anomalie-Erkennung in diskreten Ereignissystemen systematisch evaluieren zu können,
wurden  Simulationsmodelle  für  drei  Transportsysteme  unterschiedlicher  Komplexität  erstellt
(Modell A: 29 Förderbänder, Modell B: 12 Förderbänder, Modell C: 6 Förderbänder). Abbildung
5 zeigt  exemplarisch  das  Simulationsmodell  des  Transportsystems  mit  29  Förderbändern.

Abbildung 5: Simula�onsmodell des Transportsystems mit 29 Förderbändern

In  der  Simulation  bewegen  sich  Behälter  auf  verschiedenen  Routen  durch  das  jeweilige

Transportsystem.  Die  einzelnen  Förderbänder  der  Transportsysteme sind jeweils  mit  einem
Encoder  zur  Positionsmessung  sowie  mit  zwei  Lichtschranken  zur  Detektion  der  Behälter
ausgestattet.  Die  Sensordaten  werden  während  der  Simulation  mittels  einer  Logging-
Komponente in Form einer CSV-Datei abgespeichert. Während der Simulation ist es möglich,
verschiedene Fehlerfälle zu erzeugen (z.B. Sensorausfall, Rotation oder Schlupf). 
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3. Testdatensätze

1. Testdatensatz zur Verpackungsanlage des Unternehmens Becker: 

16 Log-Files mit Signalen der vier Teilprozesse
• Insgesamt 47 Sensorsignale: Lichttaster, Positionen (z.B. von Gurtbändern), 

Belegungen (z.B. von Ablageplätzen), Stromaufnahmen, …

• Diverse Fehlermeldungen: falsch positionierte oder verdrehte Produkte

2. Testdatensatz zum Elektro-Schlacke-Umschmelzprozess des Unternehmens DEW:

CSV-Dateien mit den Signalen der Elektro-Schlacke-Umschmelzanlage

• 22 Signale: Zur Erkennung der Anomalien wird hauptsächlich der gemessene 
Druck benötigt

• 459 Datensätze, teilweise mit Anomalien im Druckverlauf

3. Testdatensatz zur Lackierstraße  des Unternehmens Venjacob

• Log-Files von fünf Tagen (Zeitraum: 11.06. – 24.09.2019)

• 14 Signale: Beschleunigungssignal, Temperaturmessungen, elektrische 
Leistungsdaten des Antriebs

• Fehlersituation:  Abnutzung des Lackaustragungsbandes

4. Testdatensatz für ein Simulationsmodell des Unternehmens Venjacob

• 9 Signale: Positions- und Encoder-Signale der Förderbänder, ID des 
Gegenstandes am Wareneingang 

• 12 Datensätze, teilweise mit Sensorfehlern oder fehlerhaften Längen der 
transportierten Gegenstände

5. Testdatensatz mit Simulationsdaten für hybride Prozesse

• 130 Datensätze mit Normalverhalten

• 80 Datensätze mit Fehlern (drei Fehlertypen: defekte Tanks, blockierte Ventile, 
Sensorfehler)

• Simulationsmodell und Python-Skripte zur automatischen Testdatengenerierung

6. Testdatensatz mit Simulationsdaten für Batch-Prozesse

• 4 Teil-Datensätze (unterschiedliche Anfangsbedingungen und 
Simulationsparameter),

• 400 Batches mit Normalverhalten, 22.000 Batches mit fehlerhaftem Verhalten (15
Fehlerarten)  je Teil-Datensatz

7. Testdatensatz mit den Sensordaten verschiedener Simulationsdurchläufe in drei 

Transportsystemen unterschiedlicher Komplexität, für jedes Transportsystem

• 150 fehlerfreie Simulationsdurchläufe, in denen sich jeweils nur ein Behälter 
gleichzeitig durch das Transportsystem bewegt

• 200 fehlerfreie Simulationsdurchläufe, in denen sich 10-40 Behälter gleichzeitig 
durch das Transportsystem bewegen 

• Jeweils 25 Simulationsdurchläufe für sechs verschiedene Fehlertypen, in denen 
sich 10-20 Behälter gleichzeitig durch das Transportsystem bewegen.

Als Ergebnis der Datenerfassung liegen die folgenden Datensätze vor, welche allen 
Projektpartnern XQG�,QWHUHVVLHUWHQ�zur Verfügung stehen: 
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Arbeitspaket 3: Condition Monitoring System

Im Rahmen von AP 3 wurden Algorithmen zur Anomalie-Erkennung und zur Fehlerursachen-
Erkennung entwickelt (AP 3.1 und AP 3.2). Weiterhin sind in AP 3 eine Web-Applikation und
eine Cloud-basierte Infrastruktur für das CMS entstanden, in welche die Algorithmen integriert
wurden (AP 3.3 und AP 3.4).

Arbeitspaket  3.1: Algorithmen zur Anomalie-Erkennung

Ziele

In AP 3.1 sollte ein Produkt-übergreifend wirksamer Erkennungsmechanismus für Anomalien
bzw.  Auffälligkeiten des Prozessverhaltens einer  Produktionsanlage realisiert  werden.  Dabei
sollen wie in Abschnitt 3.2 motiviert die folgenden Arbeitsschritte durchgeführt werden:

1 Realisierung des Condition Monitoring Frameworks (Anwendungslogik,  Zugriff  auf die
Prozessdatenbank,  Integration existierender Anomalie-Erkennungsverfahren auf Basis
hybrider Automaten und tiefer neuronaler  Netze) unter Berücksichtigung vorhandener
Referenzarchitekturen  wie  VDMA  24582,  ggf.  Erarbeitung  von  Vorschlägen  zur
Weiterentwicklung der verwendeten Standards

2 Untersuchung  von  Verfahren  zur  Dimensionsreduktion  (Hauptkomponentenanalyse,
Faktorenanalyse, Auto-Encoder, etc.) 

3 Skalierung  der  Prozessmodelle  und  Lernverfahren  für  hybride  Automaten  und  tiefe
neuronale Netze

4 Parallelisierung der Lernverfahren.

Die  Migration  und  Evaluierung  der  parallelisierten  Lernverfahren  in  der  Cloud-basierten
Infrastruktur des Fraunhofer IOSB INA erfolgte in AP 3.4. Das Ergebnis von AP 3.1 sind Modell-
basierte Anomalie-Erkennungsverfahren.

Durchgeführte Arbeiten

Im Laufe des Projektes hat sich herausgestellt, dass die verschiedenen Anwendungsszenarien
unterschiedliche  Ansätze  zur  Anomalie-Erkennung  erfordern.  Während  es  sich  bei  den
Transportsystemen  der  Unternehmen  Venjacob  und  Becker  überwiegend  um  diskrete
Ereignissysteme  handelt,  werden  in  den  exemplarischen  Anwendungsszenarien  des  Unter-
nehmens DEW vorwiegend  kontinuierliche  Sensorsignale  verwendet.  Daher  wurden in  dem
Projekt  sowohl  Ansätze  für  kontinuierliche  als  auch  für  diskrete  Systeme  erarbeitet.  Für
kontinuierliche Systeme wurden drei Verfahren implementiert:

• SmartThreshold

• Hidden Markov Modell (HMM)

• Long Short-Term Memory (LSTM) Netz

Weiterhin wurde die Kombination von HMMs und LSTMs mit Variational Autoencodern 
untersucht, welche in den betrachteten Anwendungsszenarien jedoch zu keinen signifikanten 
Verbesserungen führte. 

Für diskrete Ereignissysteme wurden Verfahren auf Basis der folgenden Modelle entwickelt:
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• Automaten

• Petri-Netze

Nachfolgend werden die Projektergebnisse zu den einzelnen Verfahren beschrieben.

Erzielte Ergebnisse

SmartThreshold

SmartThreshold ist ein einfaches Baseline-Verfahren. Hier werden in einer Trainingsphase für
jedes Sensorsignal die erfassten Minima und Maxima festgehalten. Falls sich ein Sensorsignal
während  der  Betriebsphase  des  CMS  außerhalb  dieser  Grenzwerte  befindet,  wird  eine
Anomalie angezeigt.

Hidden Markov Modelle

Die Anomalie-Erkennung mit Hidden Markov Modellen geht auf einen Ansatz zurück, der  in
[WJN2015]  entwickelt  wurde.  Das  Verfahren  wurde  im  Rahmen  des  Projektes  in  Python
implementiert und um ein dynamisches CUSUM Verfahren zur Residuenanalyse erweitert. Die
verwendeten Hidden Markov Modelle (HMMs) ermöglichen es, sowohl diskrete Prozessphasen
als auch kontinuierliches Prozessverhalten in den einzelnen Prozessphasen zu beschreiben.
Dabei  wird die  Annahme getroffen,  dass nur die kontinuierlichen Signale  beobachtbar  sind.
Diese  werden  durch  multivariate  Gaußverteilungen  repräsentiert,  deren  Parameter  von  der
jeweils aktuellen Prozessphase abhängen. Die Parameter des HMMs können mit  einem EM-
Algorithmus wie dem Viterbi-Algorithmus oder dem Baum-Welch-Algorithmus ermittelt werden
(siehe [WJN2015] für Details).  Die resultierenden Modelle sind in  Abbildung 6 für den zwei-
dimensionalen Fall dargestellt, wobei „Signal 1“ und „Signal 2“ die beiden Komponenten des
Signals sind. Man erkennt, dass die Signale durch das Modell stückweise approximiert werden,
wobei der Modellierungsfehler in Form einer Standardabweichung σ ebenfalls gelernt wird. Die
Fehlererkennung  beruht  auf  der  statistischen  Analyse  der  Residuen  zwischen  Modell  und
Beobachtungen. 
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Abbildung 6: Trainingsdaten und gelerntes HMM für 2-dimensionale Messwerte

In [WJN2015]1 wurde zu diesem Zweck die Likelihood der Beobachtungen in Bezug auf das
gelernte  Prozessmodell  ausgewertet.  Dieser  Ansatz  wurde  im  Rahmen  des  Projektes
verbessert. Hierzu wurde ein neues Analyseverfahren (Dynamic CUSUM) für die Residuen von
Hidden  Markov  Modellen  entwickelt,  welches  auf  den  klassischen  CUSUM-Verfahren  für
einfache  Gauß-verteilungen  und  Kalman  Filter  basiert  (siehe  z.B.  [Granjon2013]2.   Eine
Veröffentlichung der Details des Dynamic CUSUM Verfahrens ist im Rahmen eines Artikels mit
dem Arbeitstitel „Robust Data-Driven Fault Detection in Industrial Batch Processes based on a
Stochastic Hybrid Process Model“ geplant. 

Der Hidden Markov Modell basierte Ansatz wurde auf dem Datensatz des Unternehmens DEW
sowie für das 4-Tank-System evaluiert.

Ergebnisse für die Elektro-Schlacke-Umschmelzanlage des Unternehmens DEW

In der des Unternehmens DEW Elektro-Schlacke-Umschmelzanlage wurde der Druckverlauf als
zu untersuchendes Signal verwendet. Zeitschritte mit fehlenden Werten wurden entfernt und
das Signal normalisiert. Außerdem wurden ein Moving-Average-Filter und ein Windowing auf
die Zeitreihen angewandt. Es wurden 50 Sequenzen ohne Anomalie zum Training des Modells
genutzt.  Weiterhin  wurden  die  verbliebenen  61  normalen  Sequenzen,  sowie  61  anormale
Sequenzen zum Testen der Anomalieerkennung genutzt. Abbildung 11 zeigt exemplarisch die
Prädiktion des HMMs für einen normalen Druckverlauf.  In der Abbildung sind der tatsächliche

1 [WJN2015] S. Windmann, F. Jungbluth, O. Niggemann: „A HMM-Based Fault Detection Method for 
Piecewise Stationary Industrial Processes,” in IEEE International Conference on Emerging 
Technologies and Factory Automation, Luxembourg, Sep. 2015. 

2 [Granjon2013] P. Granjon: P. Granjon, “The CuSum algorithm - a small review,” hal-00914697, 2013. 
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Signalverlauf  rot  und  die  3σ-Umgebung  um  den  vorhergesagten  Signalverlauf.  Es  ist  zu
erkennen, dass der vorhergesagte Signalverlauf die  3σ-Umgebung nicht verlässt. Insgesamt
ergab sich ein F1-Score von 0.976. Das Verfahren weist eine TP-Rate von 100.0 % und eine
FP-Rate von 4.9 % auf.

Abbildung 7: HMM-basierte Prädik�on des Druck-Signals des DEW Datensatzes

Ergebnisse für das 4-Tank-System

Für den Test des HMMs auf den Daten der in Abbildung 5 dargestellten Tanksystem-Simulation
wurden die Signale tank3.level, tank4.level und temperatureSensor4.T sowie die Ableitungen
der  Signale  tank1.level  und  tank2.level  verwendet.  Außerdem  wurden  tank3.level  und
tank4.level durch einen Schwellenwert binarisiert um das Verfahren auch für binäre Signale zu
testen. Genauso wie in dem exemplarischen Anwendungsfall des Unternehmens DEW wurden
die Signale normalisiert,  sowie eine Moving-Average-Filter und eine Windowing-Funktion auf
die Signale angewandt. 20 Sequenzen wurden als Trainingsdaten verwendet. Der Test erfolgte
auf 70 normalen und 70 anormalen Sequenzen. Das HMM erreicht einen F1-Score von 0,78,
bei einer TP-Rate von 78,6 % und einer FP-Rate von 21,4 %. In Abbildung 8 und Abbildung 9
ist zu sehen, dass das HMM binäre Signale ebenso prädizieren kann wie Werte-kontinuierliche
(dargestellt  sind  genauso  wie  in  Abbildung  7 jeweils  der  tatsächliche  Signalverlauf  als  rote
Linien sowie die 3σ-Umgebung als schwarze Linien).
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Abbildung 8: Prädizierter Signalverlauf für ein Werte-kon�nuierliches Signal des Tanksystems

Abbildung 9: Prädizierter Signalverlauf für ein binäres Signal des Tanksystems

Long Short-Term Memory (LSTM) Netze

Das im Rahmen des Projektes implementierte LSTM basiert auf der Veröffentlichung [EN2019]3,
in welcher  LSTM-Netzen zur Prognose von Energieverbräuche verwendet und auf dieser Basis
einer Modell-basierte Anomalie-Erkennung durchgeführt wird. Der allgemein Einsatzbereich von
LSTMs  sind  dynamische  Systeme mit  einem  inneren  Zustand.  Die  beobachtbaren

3 [EN2019] B. Eiteneuer, N. Hranisavljevic, and O. Niggemann, “Dimensionality Reduction and 
Anomaly Detection for CPPS Data using Autoencoder,” in 2019 IEEE International Conference on 
Industrial Technology (ICIT), 2019, pp. 1286–1292. 
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Ausgangsgrößen des Systems sind nicht nur von den Eingängen abhängig, sondern auch von
der  Historie  des  Systems,  dem Zustand.  Klassische  Anomalie-Erkennung  auf  dynamischen
Systemen erfordert den Entwurf eines Prozessmodells und somit eine exakte mathematische
Formulierung der Vorgänge des Prozesses.

Ähnlich  wie  das  Hidden  Markov  Modell,  soll  auch  dieser  Ansatz  ein  stochastisches
Prozessmodell aus den aufgezeichneten Daten anlernen. Im Gegensatz zu ersterem soll soll
das Modell jedoch nicht nur die Emissionen in Abhängigkeit des Zustands abbilden, sondern
auch die Abhängigkeit von den Eingangsgrößen.

Bei LSTMs handelt es sich um eine Erweiterung sogenannter Rekurrenter Neuronaler Netze.
Rekurrente  Neuronale  Netze  haben  im  Gegensatz  zu  einfachen  Neuronalen  Netzen  einen
inneren Zustand, sodass sie temporale Zusammenhänge lernen können. Das Netz besteht aus
mehreren LSTM-Schichten gefolgt von voll-vernetzten Schichten. Die letzte Schicht bildet die
Ausgangs-schicht.  Es werden sowohl der Erwartungswert der Ausgangsgrößen als auch die
Standardabweichung prädiziert.

Zur Simulation des Systemverhaltens werden die Eingangsgrößen des Prozesses gemessen
und  in  das  Systemmodell  eingespeist.  Die  Anomalie-Erkennung  basiert  auf  den  Residuen
zwischen den  tatsächlichen Ausgangsgrößen des Prozesses  und den mit dem Systemmodell
prädizierten  Ausgangsgrößen (Abbildung  14).  In  der  Veröffentlichung  [EN2019]  werden
Anomalien alleine durch das Überschreiten des Schwellenwertes ermittelt. Hierdurch werden
jedoch  nur  Punktanomalien  erkannt.  Um  konsekutive  Abweichungen  zu  erkennen,  wird  in
diesem Projekt  stattdessen ein Filter  eingesetzt.  Eine Anomalie wird erkannt,  wenn multiple
aufeinander folgende Überschreitungen des Schwellenwertes festgestellt werden.

Das Training des Neuronalen Netzes erfolgt mit dem Backpropagation-Algorithmus sowie dem
stochastischem Optimierungsverfahren Adam [KIN14].  Zusätzlich  wird eine Hyperparameter-
optimierung durchgeführt, sowohl des Neuronalen Netzes mittels einer Zufallssuche als auch
des Schwellenwertes durch eine Rastersuche.  Da für  jede Parameterkonfiguration  ein Netz
trainiert werden muss, erfolgt die Optimierung verteilt auf mehrere Prozessoren. Das Ziel der
Hyperparameteroptimierung ist die Maximierung der F1-Metrik.

Abbildung 10: Funk�onsprinzip des LSTM-basierten Ansatzes
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Ergebnisse für die Elektro-Schlacke-Umschmelzanlage des Unternehmens DEW

In der Elektro-Schlacke-Umschmelzanlage des Unternehmens DEW bildet der Druckverlauf die
Ausgangsgröße.  Da  aus  den  verbliebenen  Größen  keine  nützliche  Information  zur
Rekonstruktion  des  Druckverlaufs  abgeleitet  werden  konnten,  wurde  nur  die  Zeit  als
Eingangsgröße des LSTMs verwendet. Im Gegensatz zu der Vorverarbeitung für das HMM ist
es  für  das  LSTM  nicht  notwendig,  Zeitschritte  mit  fehlenden  Datenpunkten  zu  entfernen.
Stattdessen werden diese maskiert, wodurch sie keinen Einfluss auf das Training des LSTMs
haben. Für  das  Training  wurden  40  Sequenzen  ohne  Anomalie  verwendet,  sowie  zehn
zusätzlichen Sequenzen zur Validierung. Weiterhin wurden 40 Sequenzen mit Anomalien und
die für das Training verwendete Sequenzen zur Optimierung des Schwellenwertes verwendet.
Der Test erfolgte auf 61 normalen und 61 anormalen Sequenzen. Hierbei ergab sich ein F1-
Score von 1.0, eine TP-Rate von 100.0 % und eine FP-Rate von 0.0 %. In Abbildung 14 ist zu
sehen, dass die normalen Sequenzen selten starke Abweichungen aufweisen, die außerhalb
des  als  normal  gelernten  Intervalls  liegen.  Diese  werden  durch  einen Filter  erfasst.  Das
anormale Signal liegt größtenteils unterhalb der unteren Detektionsschwelle für die Anomalie-
Erkenung.

Abbildung 11: LSTM-basierte Prädik�on des Druck-Signals für eine Sequenz ohne Anomalien
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Abbildung 12: LSTM-basierte Prädik�on des Druck-Signals für eine Sequnez mit Anomalien

Ergebnisse für das 4-Tank-System

Das  LSTM-Verfahren  wurde  außerdem  auf  dem  Tanksystem-Datensatz  getestet.  Hierbei
wurden  dieselben  Signale  wie  durch  das  HMM  als  Ausgangssignale  verarbeitet.  Als
Eingangssignale verwendet das LSTM-Verfahren die vier Ventilstellungen valveLinear1.opening
bis valveLinear4.opening. Auch in diesem Test wurden die Differenzenbildung (für Signal 1 und
2), Binarisierung (für Signal 3 und 4) und Normalisierung angewandt. Das Training erfolgte auf
15 Trainingssequenzen mit fünf Validierungssequenzen. Der Test erfolgte auf 80 normalen und
80 anormalen Sequenzen. Dabei konnte ein F1-Score von 0,88 erzielt werden, mit einer TP-
Rate von 80 % und einer FP-Rate von 1,4 %,  welcher oberhalb des F1-Scores für das HMM
liegt (vgl. den vorangehenden Abschnitt zum HMM). In Abbildung 15 ist zu sehen, dass das
auch,  dass  LSTM in der  Lage ist,  sowohl binäre  als  auch Werte-kontinuierliche  Signale  zu
lernen  (sowohl  mit  als  auch  ohne  Binarisierung  liegen  die  tatsächlichen  Signalverläufe
überwiegend in der 2σ – Umgebung der prädizierten Signalverläufe.

.
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Abbildung 13: Prädizierter Signalverlauf für ein Werte-kon�nuierliches Signal des Tanksystems

Abbildung 14: Prädizierter Signalverlauf für ein binäres Signal des Tanksystems
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Automaten

Als  Baseline  für  die  Anomalie-Erkennung in  diskreten Ereignissystemen wurden bereits  am
Fraunhofer  IOSB-INA  existierende  Automaten-Lernverfahren  in  Python  implementiert
[Maier2014].   

Das Grundprinzip dieses Ansatzes wird im Folgenden anhand des in Abbildung 15  dargestell-
ten  elementaren  Fördersystems  mit  den  beiden  Lichtschranken  L1  und  L2  erläutert.  Eine
detaillierte Beschreibung des Verfahrens findet sich in [Maier2014].

Abbildung 15: Elementares Fördersystem

Die  Automaten,  die  mittels  des  OTALA  Algorithmus  aus  historischen  Sensordaten  gelernt
werden, bestehen, wie in Abbildung 16 dargestellt, aus Zuständen und Transitionen. 

Abbildung 16: Automaten-Darstellung des elementaren Fördersystems

Im Beispiel gibt der Zustand an, welche Lichtschranke gerade aktiv ist (0: keine Lichtschranke
aktiv,  1:  Lichtschranke  L1,  2:  Lichtschranke  L2).  Die  Zustandsübergänge  werden  durch
Ereignisse  ausgelöst,  welche  innerhalb  von  Zeitschranken  auftreten,  die  sich  aus  den
historischen Sensordaten ergeben (im Beispiel wird erwartet, dass im Zustand 0 innerhalb des
Zeitfensters [0.003, 1.173] das Ereignis L1 auftritt).  Die Anomalie-Erkennung basiert  auf der
Überprüfung, inwieweit die richtigen Ereignisse innerhalb der gelernten Zeitfenster aufgetreten
sind.  Die  Anomalie-Erkennung  auf  der  Grundlage  von  Automaten  wurde  auf  einem ersten
Testdatensatz des Unternehmens Venjacob erfolgreich evaluiert (erreichter F1-Score: 100%).

Petri-Netze

Bei  komplexeren  Systemen  und  insbesondere  dann,  wenn  Parallelität  auftritt,  stößt  die
Verwendung von Automaten zur Anomalie-Erkennung allerdings an ihre Grenzen. Aus diesem
Grund wurde in dem Projekt einer neuer Ansatz zur Daten-getriebenen Anomalie-Erkennung
auf Basis von Petri-Netzen entwickelt (eine Veröffentlichung dieses Ansatzes ist in einem Artikel
mit dem Arbeitstitel „Learning Petri Net Models from Sensor Data of Conveying Systems based
on the Merging of Prefix and Postfix Trees“ geplant). In dem Ansatz wird zunächst ein Petri-
Netz aus historischen Daten gelernt. 



Seite 21 des Schlussberichts zu IGF-Vorhaben   20726 N 

Abbildung 17: Schri:e zum Lernen des Petri-Netzes aus Ereignissequenzen

Dazu werden die folgenden Schritte durchgeführt, welche in Abbildung 17 exemplarisch für ein
kleines Fördersystem (siehe Abbildung 17 a) dargestellt sind:

 Lernen der Struktur des diskreten Ereignissystems aus fehlerfreien Simulationsdurchläufen,
in  denen  sich  jeweils  nur  ein  Behälter  gleichzeitig  durch  das  Transportsystem  bewegt
(hierzu wird für jeden Behälter die Ereignissequenz mitgeschnitten und in Form eines Präfix-
Trees festgehalten,  siehe  Abbildung 17 b);  unter zusätzlichen Modell-Annahmen (z.B. der
Annahme,  das  jedes  Ereignis  in  einem  Prozess  -  hier:  dem  Transportvorgang  eines
einzelnen  Behälters  -  nur  einmal  auftritt,  ist  es  alternativ  möglich,  den  Präfix-Tree  aus
Simulationsdurchläufen mit mehreren parallelen Prozessen abzuleiten 

 Ableiten  eines  Postfix-Trees,  in  dem  Ereignissequenzen  mit  gleichen  End-Sequenzen
zusammen abgespeichert werden (Abbildung 17 c)
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 Sukzessives  Mergen  von  Pfaden  des  Präfix-Trees  unter  Berücksichtigung  des  Postfix-
Trees, Herstellung der Determiniertheit des resultierenden Graphen (Abbildung 17 d)

 Transformation des Graphen in ein Petri-Netz (Abbildung 17 e)

 Ermittlung zeitlicher  Bedingungen  an den Transitionen des Petri-Netzes aus fehlerfreien
Simulationsdaten, in denen sich mehrere Behälter gleichzeitig durch das Transportsystem
bewegen

Eine einfache Parallelisierung des Verfahrens ist  möglich,  indem jeweils für einen einzelnen
Simulationsdurchlauf  ein Präfix-Tree  entsprechend  Abbildung 17 b) erstellt  wird. Die Präfix-
Trees  für  die  einzelnen  Simulationsdurchläufe  können  anschließend  elementar  zu  einem
globalen  Präfix-Tree  verschmolzen  werden.  Hierzu  wird  einer  der  lokalen  Präfix-Trees  als
Startpunkt  für  den globalen  Präfix-Tree verwendet.  Anschließend  werden die  verbleibenden
lokalen Präfix-Trees durchlaufen und die mit  den durchlaufenen Pfaden korrespondierenden
Ereignissequenzen sukzessive in den globalen Präfix-Tree eingefügt.

Zur Anomalie-Erkennung werden das Systemverhalten mit dem gelernten Petri-Netz simuliert
und auf diese Weise unerwartete Ereignisse oder Verletzungen von Zeitschranken detektiert.
Im  Folgenden  sind  die  Ergebnisse  der  Petri-Netz-basierten  Anomalie-Erkennung  in
verschiedenen Use Cases dargestellt.

Exemplarische Use Cases des Unternehmens Becker

Das  Unternehmen  Becker  hat  zur  Evaluierung  des  Condition  Monitoring  Systems  die
Sensordaten  eines  Fördersystems  mit  Verzweigungen  bereitgestellt.  Aufgrund  fehlerhafter
Trainingsdaten enthalten die für diesen Anwendungsfall generiert Präfix-Trees teilweise Pfade,
die  das  Normalverhalten  der  Anlage  nicht  korrekt  abbilden.  Beispielsweise  erstrecken  sich
einige  Pfade  in  dem  Präfix-Tree,  der  für  das  in  Abbildung  18 dargestellte  Modul  3  des
Fördersystems erstellt wurde, über zwei Prozess-Sequenzen, da aufgrund von Sensorfehlern
einzelne Startsignale von Prozess-Sequenzen in den Trainingsdaten fehlen. 

Abbildung 18: Modul 3 des Fördersystems

Die  fehlerhaften  Pfade  sind  in  Abbildung  19 rot  dargestellt  (die  Namen  der  in  dem Modul
auftretenden  diskreten  Ereignisse  können  Abbildung  18 entnommen  werden).  Um
Prozessfehler  in  den  Trainingsdaten  zu  kompensieren,  wird  ein  Pruning  des  Präfix-Trees
durchgeführt, wobei selten durchlaufende Pfade abgeschnitten werden. Der Präfix-Tree nach
dem Pruning sowie der mit dem in Abbildung 17 skizzierten Verfahren generierte Graph sind in
Abbildung 20 dargestellt.   
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Abbildung 19: Prä<x-Tree für den Use Case des Unternehmens Becker

Zur  Evaluierung  der  Anomalie-Erkennung  wurden  50  fehlerfreie  Prozesssequenzen  sowie
Testdatensätze mit 10 Fehlerfällen, welche durch Signalverzögerungen gekennzeichnet sind,
verwendet. Ein typischer Fehlerfall ist in Abbildung 21 dargestellt. Die 10 Fehlerfälle wurden von
dem Condition Monitoring System korrekt als solche erkannt. Weiterhin wurden keine Fehler auf
den fehlerfreien Testdaten erkannt. Während des Normalbetriebs der Anlage ist allerdings zu
berücksichtigen,  das  häufig  Verzögerungen  und  fehlende  Signale  (z.B.  ein  fehlendes
Startsignal)  auftreten.  Solche  Anomalien,  die  in  den  untersuchten  50  fehlerfreien
Prozesssequenzen  nicht  vorhanden  sind,  führen  potentiell  zu  vielen  Fehlermeldungen  des
Condition Monitoring Systems.
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Abbildung 20: Prä<x-Tree nach dem Pruning und gelernter Graph

Abbildung 21: Typischer Fehlerfall im Use Case des Unternehmens Becker

Zur Evaluierung der Petri-Netz-basierten Anomalie-Erkennung hat das Unternehmen Venjacob
CSV-Dateien  zur  Verfügung  gestellt,  welche  mit  dem  in  Abbildung  8 dargestellten
Simulationsmodell  generiert  wurden.  In  dem  Anwendungsfall  ist  zu  berücksichtigen,  dass
bereits beim Lernen der Struktur des Petri-Netzes mehrere Werkstücke gleichzeitig transportiert
werden. Aus diesem Grund sind Heuristiken erforderlich, um die Sensorsignale eindeutig den

Exemplarische Use CaseV des Unternehmens Venjacob
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einzelnen  Transportprozessen  zuordnen  zu  können.  Konkret  wird  in  dem  implementierten
Verfahren die  Annahme getroffen,  dass jedes Event in  einem Transportvorgang nur einmal
vorkommt,  ein  doppeltes  Event  also  jeweils  dem  nächsten  Transportvorgang  zugeordnet
werden  kann.  Die  Struktur  eines  für  diesen  Anwendungsfall  gelernten  Petri-Netzes  ist  in
Abbildung in Form des gerichteten Graphen, aus dem das Petri-Netz generiert wird, dargestellt.
Es  ist  zu erkennen,  dass  die  gelernten Petri-Netze aufgrund der  geringen  Komplexität  des
Anwendungsfalls  eine  vergleichsweise  einfache  Struktur  aufweisen.  Die  parallelen  Pfade
kommen durch  die  unterschiedlichen  Längen  der  Werkstücke,  welche  zu  unterschiedlichen
Aktivierungsreihenfolgen von Sensoren führen, zustande. Um die Skalierbarkeit des Ansatzes
zu evaluieren, wurde das Lernverfahren für Petri-Netze, wie im nächsten Abschnitt dargestellt,
zusätzlich auf ein komplexeres Transportsystem angewendet.  

Komplexeres Transportsystem

Für  das  Beispiel  aus  Abbildung  12 ergibt  sich  durch  die  Anwendung   des  entwickelten
Lernverfahrens das in  Abbildung 23 dargestellte Petri-Netz. In dem Beispiel wurden  für jedes
Förderband  zwei  Transitionen  gelernt,  die  den  Lichtschranken  am  Anfang  und  Ende  des
Förderbandes entsprechen. 

Abbildung 22: Struktur des Petri-Netzes für den Use Case des Unternehmens Venjacob



Seite 26 des Schlussberichts zu IGF-Vorhaben   20726 N 

Abbildung 23: Struktur des gelerntes Petri Netz für das Transportsystem aus Abbildung 12

Um  die  Anomalie-Erkennung mit  Petri-Netzen  systematisch  zu  evaluieren,  wurde  ein
Testdatensatz  für  die  ersten  12  Förderbänder  des  in  Abbildung  12 dargestellten
Transportsystems verwendet. Zum Lernen der Struktur des Petri-Netzes wurden 20 fehlerfreie
Simulationsdurchläufe herangezogen, in denen sich jeweils nur ein Behälter gleichzeitig durch
das Transportsystem bewegt. Um die zeitlichen Bedingungen an den Transitionen des Petri-
Netzes  zu  ermitteln,  wurde  auf  20  weitere  Simulationsdurchläufe  mit  jeweils  20  Behältern
zurückgegriffen.  Die  Evaluierung  wurde auf  100 fehlerfreien  Simulationsdurchläufen  und  75
fehlerbehafteten Simulations-durchläufen mit jeweils 20 Behältern durchgeführt. Dabei wurden
drei  Fehlertypen  mit  gleicher  Häufigkeit  berücksichtigt  (Sensorausfälle,  Schlupf  und  falsche
Länge der Behälter) Insgesamt konnte ein F1-Score von 0,85 erzielt werden.
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Ziele

Ziel  der  Fehlerursachen-Erkennung  war es,  den  erkannten  Anomalien  mögliche  Ursachen
zuzuordnen.  Die  Fehlerursachen-Erkennung  soll einem  unerwarteten  Event,  welches  als
Anomalie detektiert wird, abhängig vom Systemzustand bei Auftreten des Symptoms beispiels-
weise die mögliche Ursache „Sensorausfall“  zu.  Als  mögliche Ursachen für  ein  verzögertes
Ereignis könnten „Schlupf“ oder fehlerhafte Abmaße der transportierten Gegenstände vorliegen.

Durchgeführte Arbeiten

In dem Projekt wurde zur Fehlerursachen-Erkennung ein Ansatz auf der Grundlage von Case-
Based Reasoning entwickelt. Im ersten Schritt werden die Fehlersymptome (falsche Ereignisse
oder  verletzte  Zeitschranken)  ermittelt  und  in  einer  Datenbank  abgespeichert.  Darauf
aufbauend wurde ein Verfahren entwickelt, welches den Symptomen auf Basis von Case-based
Reasoning  Fehlerbeschreibungen  zugeordnet  werden.  Die  Evaluierung  der  Fehlerursachen-
Erkennung wurde in den im Projekt betrachteten Transportsystemen durchgeführt.

Erzielte Ergebnisse

Der entwickelte Ansatz basiert  auf  einem Repository,  in  dem zu den in  der  Vergangenheit
aufgetretenen  Anomalien  jeweils  eine  Beschreibung  des  Symptoms und  der  Fehlerursache
abgelegt sind. In diskreten Ereignissystemen wird das Symptom durch folgende Informationen
charakterisiert:

• Systemzustand beim Auftreten der Anomalie (in Petri-Netzen die aktuelle Markierung 
zu diesem Zeitpunkt)

• Ereignis, welches die Anomalie hervorgerufen hat

• Bei der Verletzung von Zeitschranken zusätzlich die erwarteten Zeitschranken für das 
Ereignis und der Zeitpunkt, zu dem das Ereignis tatsächlich eingetreten ist. 

Als  Fehlerursache wird jeweils  eine Kategorie eingetragen (bei  Transportsystemen kommen
z.B. die Kategorien „Sensorausfall“, „Schlupf“, „Falsche Länge“ in Betracht). 

Der Ablauf der Fehlerursachen-Erkennung ist in Abbildung 24 dargestellt. 

Als  Ergebnis  der  Anomalie-Erkennung  ergeben  sich  Symptome,  deren  Ursachen  zunächst
unbekannt  sind.  Mögliche  Ursachen  werden in  einem Retrieval-Schritt  ermittelt,  in  dem ein
jeweils aufgetretenes Symptom mit den im Repository gespeicherten Symptomen verglichen
wird.  Anschließend  werden  die  möglichen  Ursachen  entsprechend  der  Ähnlichkeit  der
Symptome sortiert und dem Benutzer präsentiert.

AP�3.2 Fehlerursachen-Erkennung
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Abbildung 24: Case-Based Reasoning - Grundprinzip

Grundlage  für  diesen  Ansatz  ist  ein  geeignetes  Ähnlichkeitsmaß,  welches  von  der
Beschaffenheit  der Symptome im Condition Monitoring System abhängt.  Wird die Anomalie-
Erkennung auf der Grundlage von Petri-Netzen durchgeführt,  kann das Ähnlichkeitsmaß als
Produkt  der  drei  folgenden  Faktoren  berechnet  werden,  wobei  der  dritte  Faktor  nur
berücksichtigt wird, wenn durch die Anomalie Zeitschranken verletzt werden:

• Ähnlichkeit der Systemzustände (Markierungen): Ausgangspunkt der Ähnlichkeits-
berechnung ist eine vereinfachte Darstellung der Markierung in Form von Mengen, 
welche angeben, welche Stellen eines Petri-Netzes zum Zeitpunkt der Anomalie belegt 
sind. Die Markierung M = {1, 5, 8} gibt beispielsweise an, dass sich Tokens an den 
Stellen 1, 5 und 8 des Petri-Netzes befinden. Als Ähnlichkeitsmaß zwischen zwei 
Markierungen M1 und M2 wird max{eps, J(M1, M2)) verwendet, wobei J(M1, M2) = (M1
M2) / (M1 υ M2) den Jaccard-Koeffizienten der Mengen M1 und M2 bezeichnet, 
welcher durch die Konstante eps1 << 1 nach unten begrenzt wird, um zu verhindern 
dass der erste Faktor des Ähnlich-keitsmaßes 0 wird. 

• Ähnlichkeit der Ereignisse: Der zweite Faktor des Ähnlichkeitsmaßes wird auf den Wert 
1 gesetzt, wenn die Symptome auf ein identisches Ereignis zurückzuführen sind, 
ansonsten auf den Wert eps2 << 1. 

• Art der Zeitüberschreitung: Für zeitliche Anomalien wird weiterhin die Art der Zeitüber-
schreitung in dem Ähnlichkeitsmaß berücksichtigt. Falls in beiden Symptomen eine 
obere Zeitschranke überschritten oder eine untere Zeitschranke unterschritten wird, 
wird der dritte Faktor des Ähnlichkeitsmaßes auf den Wert 1 gesetzt. Ist die Art der 
Zeitüberschreitung bei den beiden Symptomen unterschiedlich, wird für den dritten 
Faktor des Ähnlichkeitsmaßes ein kleiner Wert eps3 << 1 angenommen. 

Auf die beschriebene Weise wird für jeden im Repository existenten Fall ein Ähnlichkeitswert
berechnet.  Anschließend  werden  die  Ähnlichkeitswerte  für  eine  Fehlerursache  jeweils
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aufaddiert  und  die  Fehlerursachen  mit  den  höchsten  kumulierten  Ähnlichkeitswerten  dem
Benutzer als mögliche Fehlerursachen angezeigt. 

Der  Benutzer  kann  mit  dieser  Zusatzinformation  den  Fehler  beheben  und  die  tatsächliche
Fehlerursache eingeben bzw. eine der vorgeschlagenen Fehlerursachen bestätigen (Reuse &
Revise). Abschließend wird die vom Benutzer angegebene Fehlerursache zusammen mit dem
aufgetretenen Symptom im Repository gespeichert. Auf diese Weise wird die Fall-Datenbank
mit jedem aufgetretenen Symptom erweitert.

Die  Ergebnisse  der  Fehlererkennung  sind  in  Abbildung  25 und  Abbildung  26 dargestellt.
Abbildung 25 zeigt, dass die drei Fehlerarten „Sensor failure“, „Slipped container“ und „Incorrect
dimensioned container“ in 93%, 81%, and 99% der Fälle korrekt klassifiziert werden. 

Aus  Abbildung  26 geht  hervor,  dass  der  Anteil  der  richtig  klassifizierten  Fehlerfälle  mit

zunehmender Größe des Repositories zunimmt.

Abbildung 25: Confusion Matrix für die Fehlerarten "Sensor failure" (Typ 0), 

"Slipped container" (Typ 1) und "Incorrect dimensioned container" (Typ 2) 

Abbildung 26: Zunahme der richtig klassifizierten Fehler mit der Anzahl der 

Fehlerfälle im CBR Repository
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entwickelt  werden.  Die  Stellmöglichkeiten  in  der  GUI  sollten  auf  das  wesentliche  Minimum
reduziert  werden,  so  dass  sie  ohne  aufwendige  Konfiguration  für  verschiedene  Anlagen
eingesetzt werden kann. Beispielsweise sollte keine aufwendige Auswahl von Prozessdaten bei
der Anomalie-Erkennung notwendig sein. Mögliche Anomalien sollten z.B. in Form einer Ampel
angezeigt  werden,  wobei  zwischen  normalem  Prozessverhalten  sowie  leichten  und
schwerwiegenden  Anomalien  unterschieden  werden  kann.  Darüber  hinaus  sollten  aufgrund
identifizierter Fehlerursachen Handlungsanweisungen für den Operator generiert werden. 

Durchgeführte Arbeiten

In diesem Arbeitspaket wurde eine Web-Applikation entwickelt, welche das Lernen der für das
Condition  Monitoring  erforderlichen  Prozessmodelle  sowie  eine  Modell-basierte  Anomalie-
Erkennung ermöglicht.

Erzielte Ergebnisse 

Die entwickelte Web-Applikation, welche unter dem im Kapitel „Projektergebnisse“ 
angegebenen Link verfügbar ist, besteht aus mehreren Web-Pages, die im folgenden 
beschrieben werden. In Abbildung 27 ist die Web-Page zur Konfiguration der Modell-Erstellung 
dargestellt. 

Abbildung 27: Kon<gura�on der Modell-Erstellung 

Auf  der  Web-Page  können  der  Name  des  Modells,  eine  Datenquelle  sowie  der
Trainingszeitraum konfiguriert werden. Weitere Parameter wie der Modelltyp (PETRINET, HMM,
LSTM, etc.) oder die Anzahl der Sensordaten, die gleichzeitig von der Datenquelle übertragen

AP�3.3 Web-basierte Benutzerschnittstelle

Ziele 

Zur  Anzeige  von Anomalien  und Fehlerursachen sollte  eine geeignete  Benutzerschnittstelle
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werden,  sind in  einer  Datei  konfigurierbar.  Nach dem Start  der  Modell-Erstellung  wird  dem
Benutzer  der  Status  des  Lernvorgangs  angezeigt.  Das  erstellte  Modell  wird  in  einer  SQL-
Datenbank abgelegt. Beim Start des Condition Monitorings müssen die Datenquelle angegeben
und ein zuvor erstelltes Modell ausgewählt  werden (siehe  Abbildung 28). Weitere Parameter
können  wiederum  in  der  Datei  gui_config.py spezifiziert  werden.  Hier  kann  insbesondere
angegeben werden, inwieweit das Condition Monitoring online oder für Demonstrationen offline
durchgeführt  werden  soll.  Wenn  das  Condition  Monitoring  offline  durchgeführt  wird,  ist  es
darüber hinaus möglich, einen Startzeitpunkt sowie eine zeitliche Verzögerung beim Condition
Monitoring zu spezifizieren. Weiterhin ist die Anzahl der Sensordaten, die gleichzeitig von der
Datenquelle übertragen werden, konfigurierbar. Darüber hinaus kann das Diagnosemodul in der
Konfigurationsdatei  aktiviert  werden.   Während  des  Condition  Monitorings  werden der
Systemzustand in Form einer Ampel sowie weitere Informationen zu aufgetretenen Anomalien
in einem Textfeld angezeigt  (Abbildung 29). Wenn der Diagnose-Modus aktiviert  ist, werden
dem Benutzer darüber hinaus mögliche Ursachen für die Anomalien präsentiert, welche von
dem Diagnosemodul ermittelt werden. In dem Textfeld „Tatsächliche Ursache“ wird zunächst
autoamtisch die wahrscheinlichste Ursache eingetragen. Diese kann vom Benutzer bestätigt
oder durch eine andere Ursache ersetzt werden. Anschließend kann die Anomalie-Erkennung
durch Betätigen des Buttons „Anomalien behoben“ fortgesetzt werden.

Abbildung 28: Starten des Condi�on Monitorings
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Abbildung 29: Condi�on Monitoring

Die Architektur der Web-Applikation ist in Abbildung 30 skizziert. 

Abbildung 30: Architektur der Web-Applikation

Die Views dienen der Erstellung  einzelner Web-Pages.  Je nach aufgerufener URL wird ein
anderes  Python-Skript  ausgeführt  (monitoring_start,  monitoring,  ml_start,  etc.),  welches  das
Rendern der Web-Page entsprechend einem dafür erstellten Template anstößt. Die Web-Pages
kommunizieren  über  WebSockets  mit  Python-Threads,  in  denen  die  Logik  des  Condition
Monitoring Systems implementiert ist. Consumer dienen zur Erzeugung dieser Threads.  Zum
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Modell-Lernen wird ein Learning-Thread aufgerufen, der auf historische Daten in einer InfluxDB
zugreift und unter Verwendung einer Algorithmen-Bibliothek ein Prozessmodell erstellt (z.B. die
oben beschriebenen Automaten oder Petri-Netze oder die im vorangehenden Berichtzeitraum
entwickelten HMMs oder LSTMs). Die gelernten Prozessmodelle werden in einer SQLite DB
abgelegt  und  während  des  Condition  Monitorings  geladen.  Beim  Condition  Monitoring
auftretende Anomalien werden in einer zweiten SQLite DB gespeichert. Weiterhin existiert ein
Diagnosemodul (CBR-Modul) welches im Fehlerfall die wahrscheinlichsten Fehlerursachen auf
Basis eines Repositories ermittelt (retrieve). Die tatsächliche Fehlerursache für den jeweiligen
Fehlerfall  wird  zur  Aktualisierung  des  Repositories  verwendet.  Das  Repository  des
Diagnosemoduls wurde als SQLite Datenbank realisiert (CBR cases).

Lernen,  in  die  in  AP2.2  entwickelte  Cloud-basierte  Infrastruktur  ausgelagert  werden.  Dazu
sollten die in AP 3.1 bereits parallelisierten Verfahren zum Modell-Lernen an die Schnittstellen
der Cloud-Umgebung angepasst und in der Cloud-basierten Infrastruktur des Fraunhofer IOSB-
INA evaluiert werden.

Durchgeführte Arbeiten

Im  Rahmen  von  AP3.4  wurde  ein  Cloud-basiertes  Infrastrukturkonzept  entwickelt,  welches
insbesondere ein Cloud-basiertes Modell-Lernen ermöglicht. Das Konzept wurde zunächst lokal
getestet. Anschließend wurde die Migration in die Cloud durchgeführt.

Erziele Ergebnisse

Eine Übersicht über das Infrastrukturkonzept ist in Abbildung 31 dargestellt. Das Konzept stellt
eine  logische  Trennung  der  drei  Hauptkomponenten  Datenerfassung,  Datenhaltung  und
Anwendungslogik sicher. Die Komponenten befinden sich in separaten Docker-Containern, die
über  Microservices  verbunden  sind,  um  Isolation  und  Skalierbarkeit  zu  gewährleisten.  Das
Fraunhofer IOSB-INA stellt einen leistungsfähigen und rechenstarken Nvidia DGX-1-Cluster zur
Verfügung,  der  genügend Ressourcen bietet,  um hochintensive  Berechnungen in  parallelen
Threads durchzuführen. Der Cluster ist im lokalen Netzwerk des Instituts gekapselt und nach
Industriestandards abgesichert. Der Zugriff darauf ist über ein sicheres VPN möglich. Alternativ
kann  die  Infrastruktur  auch  On-Edge  implementiert  werden,  wie  es  einige  Industriepartner
entsprechend ihrer Infrastruktur- und Sicherheitsvorschriften wünschen.

AP�3.4 Cloud-basiertes Modell-Lernen

Ziele

In  AP3.4  sollten  rechenintensive  Prozesse,  d.h.  insbesondere  die  Methoden  zum  Modell-
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Abbildung 31: Cloud-basiertes Infrastruktur-Konzept für das parallelisierte Modell-Lernen

Arbeitspaket 4: Evaluierung, Dokumentation und 

Projektmanagement

Arbeitspaket 4 umfasst Projekt-übergreifende Tätigkeiten, welche in den folgenden Abschnitten

dargestellt sind.

Arbeitspaket 4.1: Evaluierung

Ziele

In  AP4.1  sollte das  CMS  mit  Testdaten  der  Unternehmen  Becker,  DEW  und  Venjakob
systematisch evaluiert werden. Die Ergebnisse sollten in einem Testbericht festgehalten und im
Rahmen des projektbegleitenden Ausschusses diskutiert werden. 

Durchgeführte Arbeiten 

Im Rahmen von AP4 wurde das CMS mit den Testdaten der Unternehmen Becker, DEW und
Venjacob  systematisch  evaluiert.  Die  durchgeführten  Evaluierungen  sind  im  Rahmen  von
Arbeitspaket 3.1 und Arbeitspaket 3.2 dargestellt. 

Erzielte Ergebnisse 

Systematische Evaluierung der Condition Monitoring Verfahren auf Testdatensätzen.
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Arbeitspaket 4.2: Dokumentation

Ziele

Die  in  dem Projekt  gewonnenen  Erkenntnisse  sollten durch  das  Fraunhofer  IOSB-INA
dokumentiert werden. 

Durchgeführte Arbeiten 

Im  Rahmen  von  AP4.2  wurde  eine  Dokumentation  der  Projektergebnisse  erstellt  und  den
Mitgliedern  des  Projekt-begleitenden  Ausschusses  zur  Verfügung  gestellt. Darüber  hinaus
wurden wissenschaftliche Veröffentlichungen zu den Projektergebnissen erstellt.

Erzielte Ergebnisse 

Als Ergebnis von AP 4.2 liegt eine Dokumentation vor, welche allen Interessenten auf Anfrage

zur Verfügung gestellt wird. Weiterhin sind folgende Publikationen mit Bezug zu dem Projekt

erstellt worden:

• Kaja Balzereit, Alexander Diedrich, Jonas Ginster, Stefan Windmann, Oliver Niggemann:

„An Ensemble of Benchmarks for the Evaluation of AI Methods for Fault  Handling in

CPPS“, IEEE International Conference on Industrial Informatics (INDIN), 2021

• Stefan Windmann: „Data-Driven Fault Detection in Industrial Batch Processes based on

a Stochastic Hybrid Process Model“, conditionally accepted for: IEEE Transactions on

Automation Science and Engineering  

• Stefan Windmann: „Learning Petri Net Models from Sensor Data of Conveying Systems

based  on  the  Merging  of  Prefix  and  Postfix  Trees“,  accepted  for:  at

Automatisierungstechnik.

Zwei weitere Veröffentlichungen zur Petri-Netz-basierten Diagnose von Prozessfehler sowie zur

Anomalie-Erkennung auf Basis von LSTMs sind in Arbeit.

Arbeitspaket 4.3: Projektmanagement und Transfer

Ziele

Das Projektmanagement durch das IOSB sorgt für einen reibungslosen Projektablauf und eine
angenehme  Kommunikation  zwischen  den  Partnern.  Die  Zwischenergebnisse  wurden
regelmäßig zu den Projektpartnern transferiert.

Durchgeführte Arbeiten

Im Rahmen von AP 4 wurden ein Kick-Off-Meeting sowie Telefongespräche und Treffen zur
inhaltlichen  und  organisatorischen  Abstimmung  der  Projektinhalte  durchgeführt.  Weiterhin
wurden  die Projektergebnisse den Projektpartnern über OpenProject  zur Verfügung gestellt.

Erzielte Ergebnisse

Das Projekt wurde erfolgreich umgesetzt und über diverse Maßnahmen ein Ergebnistransfer an
die  Projektpartner  durchgeführt  (vgl.  Transferplan).  Die  wesentlichen  Projektergebnisse  sind
zusammenfassend im nächsten Abschnitt dargestellt.
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Projektergebnisse

Im Rahmen des IGF-Vorhabens CLArA sind die folgenden Softwarekomponenten und 
Datensätze entstanden:

AP1: Anforderungsanalyse

• Anlagenspezifikationen

AP2: Datenerfassung

• Software-Komponenten zur Datenerfassung:
◦ OPC UA Connector für die InfluxDB
◦ InfluxDB Writer und InfluxDB Reader
◦ Log-File Konverter 

• Simulationsmodell eines 4-Tank-Systems
• Simulationsmodelle von Transportsystemen
• Testdatensätze (siehe Abschnitt Fehler: Verweis nicht gefunden)

AP3.1: Anomalie-Erkennung

• Algorithmen zum Modell-Lernen und zur Anomalie-Erkennung:
◦ SmartThreshold
◦ Verbesserte Implementierung eines HMM-basierten Ansatzes
◦ LSTM-basierte Anomalie-Erkennung
◦ Anomalie-Erkennung mit Automaten, Lernverfahren für Automaten
◦ Anomalie-Erkennung mit Petri-Netzen, Lernverfahren für Petri-Netze

AP3.2: Fehlerursachen-Erkennung

• Diagnosemodul auf der Grundlage von Case-based Reasoning

AP3.3: Visualisierung

• Web-Applikation mit Visualisierungskomponenten für die Modell-Erstellung, das 
Condition Monitoring und die Fehlerursachen-Erkennung 

AP3.4: Cloud-basierte Infrastruktur

• Cloud-basiertes Infrastruktur-Konzept für das parallelisierte Modell-Lernen

Die Softwarekomponenten befinden sich in einem Git-Repository, auf das über die  folgende 
URL zugegriffen werden kann: https://ina-project.iosb-ina.fraunhofer.de/git/clara.git.

Auf die Testdatensätze, die sich in der OwnCloud befinden, kann über zu diesem Zweck 
versendete Links zugegriffen werden.  

https://ina-project.iosb-ina.fraunhofer.de/git/clara.git
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2. Verwendung der Zuwendung

Der  erste wissenschaftliche Mitarbeiter  und die Hilfskraft  wurden planmäßig  eingesetzt.  Die
Aufwände für den zweiten wissenschaftlichen Mitarbeiter wurden teilweise von der ersten in die
zweite Projekthälfte verschoben worden, da in dieser Phase mehr Testdaten vorhanden waren,
so  dass  ein  sinnvollerer  Mitteleinsatz  erfolgen  konnte.  Die  geleistete  Arbeit  entsprach  im
Übrigen dem begutachteten und bewilligten Antrag und war daher für die Durchführung des
Vorhabens notwendig und angemessen.

$XVJDEHQ�I�U�*HUlWHEHVFKDIIXQJ�RGHU�/HLVWXQJHQ�'ULWWHU�ZXUGHQ�QLFKW�JHOWHQG
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 Wissenschaftlich-technisches Personal (Einzelansatz A.1 des Finanzierungsplans)
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3. Notwendigkeit und Angemessenheit der geleisteten Arbeit

Angaben zu den �aus der Zuwendung finanzierten Ausgaben für  Personenmonate  deV�
wissenschaftlich-technischen Personals�gemäß Beleg über�Beschäftigungszeiten  (Einzelansatz
A.1des �Finanzierungsplans), �für �Geräte �(Einzelansatz �B �des  Finanzierungsplans) und  für 
Leistungen Dritter (Einzelansatz C des Finanzierungsplans)�



Seite 38 des Schlussberichts zu IGF-Vorhaben   20726 N 

4. Darstellung des wissenschaftlich-technischen und 

wirtschaftlichen Nutzens der erzielten Ergebnisse 

insbesondere für KMU sowie ihres innovativen Beitrags und 

ihrer industriellen Anwendungsmöglichkeiten

Industrielle  Produktionsanlagen und insbesondere auch Anlagen des Sondermaschinenbaus
sind durch eine steigende Komplexität gekennzeichnet,  die die Konfiguration und Bedienung
solcher  Anlagen  zunehmend  erschwert.  Daher  entstehen  immer  mehr  intelligente
Assistenzsysteme,  die  die  Anlagenbetreiber  dabei  unterstützen,  Fehler  und  Anomalien  in
industriellen  Prozessen  frühzeitig  zu  erkennen,  Prozessabläufe  zu  optimieren  und  die
Ressourceneffizienz  der  Produktionsanlagen  zu  verbessern.  Das  Wachstumspotential  für
intelligente Assistenzsysteme liegt laut einer Studie vom BBC Research4 bei 30% pro Jahr. Dies
ist besonders deswegen interessant,  weil  laut acatech5 die Gewinnspanne beim Absatz von
Anlagen lediglich bei zwei bis drei Prozent liegt, die nachgelagerten Dienstleistungen allerdings
Margen von bis zu 20 Prozent erwirtschaften können. 

Insbesondere  die  Überwachung  der  Funktionalität,  d.h.  das  Erkennen  von  Komponenten-
ausfällen  und  schleichenden  Veränderungen  des  Anlagenverhaltens  ist  von  essentieller
Bedeutung für die Anlagenbetreiber. Stillstandszeiten von Maschinen und Anlagen sind in der
Regel mit erheblichen Kosten für die Anlagenbetreiber verbunden. So kostet beispielsweise der
Ausfall einer Spritzgießmaschine im Mittel zwischen 10.000€ und 40.000€ pro Stunde. Ist eine
defekte Maschine Teil einer Produktionskette, z.B. im Automobilbau, können die Kosten eines
Ausfalls sogar schnell in den Millionenbereich gehen. Um Maschinen- und Anlagenausfälle zu
vermeiden, werden in Deutschland jährliche direkte Ausgaben für Instandhaltungsmaßnahmen
im  Umfang  von  250  Milliarden  Euro,  d.h.  von  etwa  acht  Prozent  des  deutschen
Bruttoinlandproduktes, vorgenommen. Diese Kosten können durch den Einsatz von  Condition
Monitoring Systemen (CMS) erheblich reduziert werden. 

In  dem durchgeführten Projekt  wurden  Lösungen entwickelt,  welche  den Einsatz  von  CMS
insbesondere  im  Sondermaschinenbau  erleichtern.  Zum  einen  wurden  neue  Condition
Monitoring Methoden erarbeitet, welche dazu beitragen, den Anlagenzustand in verschiedenen
Betriebssituationen  hinreichend  genau  zu  beurteilen.  Zum anderen  wurden Hürden  bei  der
Implementierung und Inbetriebnahme überwunden, welche durch manuelle Konfigurationen und
Anpassungen an unterschiedliche Anlagen entstehen. Dies wurde  durch benutzerfreundliche
Visualisierungskomponenten, eine einheitliche Datenanbindung sowie den Einsatz maschineller
Lernverfahren erreicht. Das entwickelte System passt sich automatisch an existierende Anlagen
an  und  detektiert Anomalien  und  Fehlerursachen  auf  der  Grundlage  einer  gelernten
Repräsentation des Systemverhaltens.  Hierzu werden in einer Trainingsphase Analyse-  und
Diagnosemodelle aus historischen Prozessdaten gelernt und während des Betriebs des CMS
zur  Anomalie-Erkennung  und  zur  Diagnose  von  Fehlerursachen  verwendet.  Durch  die

4 A. McWilliams, “Smart Machines: Technologies and Global Markets,” tech. rep., BBC RESEARCH, 
2014. 

5 C. Vornholt, ed., Smart Maintenance für Smart Factories: Mit intelligenter Instandhaltung die Industrie 
4.0 vorantreiben. acatech - Deutsche Akademie der Technikwissenschaften, 2015. 
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entwickelte  Lösung werden die Entwicklungs-  und Inbetriebnahmekosten  für  CMS erheblich
reduziert und insbesondere ein wirtschaftlicher Einsatz in kundenspezifischen Anlagen, die nur
in kleinen Stückzahlen produziert werden, erreicht.

KMU aus unterschiedlichen Industriezweigen entlang der gesamten Wertschöpfungskette 
können einen Nutzen aus den Ergebnissen des Vorhabens ziehen:

• Für Anwender ergibt sich durch das Projekt die Möglichkeit, CMS ohne aufwendige 
Programmierung und Konfiguration in verschiedenartige Produktionsanlagen, die in 
unterschiedlichen Branchen wie der holzverarbeitenden Industrie, der Automobilindustrie
oder der stahlverarbeitenden Industrie eingesetzt werden, zu integrieren. Dies stellt 
insbesondere für KMU einen echten Mehrwert dar, da diese oft nicht über die 
erforderlichen Ressourcen verfügen, um CMS für unterschiedliche Produktionsanlagen 
zu implementieren und zu konfigurieren. 

• Für Systemintegratoren stellen die Projektergebnisse einen wesentlichen Beitrag zum 
Know-how-Aufbau im Bereich Cloud-basierter CMS dar. Dadurch können sie die 
Projektergebnisse in ihre Produkte integrieren und auf diese Weise Umsatzwachstum 
erzielen. Durch das Projekt wird es Systemintegratoren ermöglicht, das vorhandene 
Produktportfolio um Produkte im Bereich Cloud-basierter CMS zu erweitern. Darüber 
hinaus können vorhandene Private und Public Cloud Lösungen von Systemintegratoren 
perspektivisch auf Condition Monitoring Lösungen für industrielle Anwendungen 
ausgeweitet werden. 

• Komponentenhersteller bekommen durch die Projektergebnisse einen besseren Einblick
in die Anforderungen der Anwender bzgl. der Datenanalyse. Gerade KMUs, deren 
Wissen über eine Gesamtanlage oder einen Produktionsprozess vergleichsweise gering 
ist, werden so in die Lage versetzt, neue (datenbasierte) Produkte und Services auf 
Komponentenbasis zu entwickeln. Aus Sicht der Komponentenhersteller ist es dabei 
insbesondere von Interesse zu verstehen, mit welchen informationstechnischen 
Infrastrukturen sich Komponenten zukünftig verbinden müssen, um höheren 
Hierarchieebenen Daten bereitstellen zu können. Komponentenherstellern können die 
Ergebnisse des Projektes bei der Produktentwicklung und der Entwicklung zukünftiger 
Produkt-Roadmaps berücksichtigen. Ein Nutzen für KMUs ergibt sich insbesondere 
auch in der Betrachtung einer einheitlichen Integration heterogener Datenquellen und 
der Formulierung zukünftiger Anforderungen an die eigenen Produkte auf Basis der in 
dem Projekt gesammelten Erfahrungen.
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5. Plan zum Ergebnistransfer in die Wirtschaft

Durchgeführte Transfermaßnahmen während der Projektlaufzeit:

Maßnahme Ziel Ort/Rahmen Zeitraum

Bereitstellung von Transfer von 
Zwischenergebnissen

Überwachung der 
Projektziele und 
Beschluss 
weiterführender 
Maßnahmen

1. Lemgo (Kick-Off)
2. Rheda-Wiedenbrück
3. Webkonferenz
4. Webkonferenz
5. Webkonferenz 
(Projektabschluss)

10.07.2019
18.02.2020
21.07.2020
09.02.2021
26.05.2021

Transfermaßnahmen nach Projektabschluss:

Maßnahme Ziel Ort/Rahmen Zeitraum

Wissen-
schaftliche 
Veröffentli-
chung auf 
Fachkonfe-
renzen

Wissenschaftliche 
Erkenntnisse werden 
auf Fachkonferenzen 
veröffentlicht

1. K. Balzereit, A. Diedrich, J. 
Ginster, S. Windmann, O. 
Niggemann: „An Ensemble of 
Benchmarks for the Evaluation of 
AI Methods for Fault Handling in 
CPPS“, INDIN 2021.
2. T. Westerhold, S. Windmann: 
„LSTM-based fault detection“, 
designated for: ETFA 2022.

1. Juli 2021
2. geplant für 
September 2022 

Workshops / 
Know-how-
Transfer

Übertragung des 
Know-hows in die 
Unternehmen des PA

Video-Schulungen mit den 
einzelnen Mitgliedern des 
Projektbegleitenden Ausschusses

Juli 2021

Lehre und 
Weiterbildung

Vorstellung von 
Projektergebnissen 
(z.B. neuer 
Algorithmen) in 
Vorlesungen

Vorlesungen des Antragstellers an
der TH OWL

Wegen Professur-
Wechsel 
voraussichtlich nicht 
durchführbar

Vorstellung 
von Ergeb-
nissen in 
Standardi-
sierungsor-
ganisationen

Weiterentwicklung von 
Informationsmodellen 
und 
Referenzarchitekturen 
für CMS

AutomationML e.V.,
OPC Foundation,
VDMA 24582, etc.

Entfällt, da im Projekt 
keine 
standardisierungs-
relevanten Ergebnisse 
entstanden sind

Abschluss-
bericht

Zusammenstellung der 
Ergebnisse

Bericht und Präsentation November / Dezember
2021

Evaluierung 
bei
Anwendern

Transfer der 
Ergebnisse an 
Unternehmen 
außerhalb des PA

Gespräche mit Betreibern
großer Produktionsanlagen

Innerhalb von 1-2 
Jahren nach 
Projektabschluss

Integration in  
Leitsysteme

Integration der 
Ergebnisse in 
existierende 
Leitsysteme 

Gespräche mit Herstellern von
Leitsystemen

Innerhalb von 1-2 
Jahren nach 
Projektabschluss

Information, 
Beratung,
Qualifikation

Projektergebnisse 
werden an den 
Mittelstand vermittelt

Schulungen und Demonstrationen
in der SmartFactoryOWL

Innerhalb von 1-2 
Jahre nach 
Projektabschluss

Demonstra-
tion der 
Ergebnisse

Darstellung der 
Verwertbarkeit der 
Technologie

Industriemessen (z.B. 
Hannovermesse)

Im Jahr nach 
Projektende

Wissen-
schaftliche

Wissenschaftliche 
Erkenntnisse werden in

1. S. Windmann: „Data-Driven 
Fault Detection in Industrial Batch 

1. Einreichung der 
finalen Version erfolgt 

Projektbegleitender 
Ausschuss (PA)

Arbeitspaket 4.3 Projektbegleitend
Zwischenergeb��DQ�3$
XQG�,QWHUHVVLHUWH
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Veröffentli-
chung
in 
Zeitschriften

Magazinen, Journals, 
etc. veröffentlicht

Processes based on a Stochastic 
Hybrid Process Model“, 
conditionall accepted for: T-ASE.
2. S. Windmann: „Learning Petri 
Net Models from Sensor Data of 
Conveying Systems based on the 
Merging of Prefix and Postfix 
Trees“, accepted for: at 
Automatisierungstechnik
3. S. Windmann: „Petri Net Based 
Diagnostic Approach for 
Concurrent Discrete Event 
Systems“, designated for: at 
Automatisierungstechnik.

im Dezember 2021 
2. Veröffentlichung ist 
im November 2021 
angenommen worden, 
Datum der 
Veröffentlichung steht 
noch nicht fest.
3. Einreichung erfolgt 
im Dezember 2021

Vorstellung in
Gremien

Wissenstransfer Frühjarssitzung 2022 der ZVEI-
Forschungsgemeinschaft 
Automation

Frühjahr 2022

Erläuterungen zur Realisierbarkeit der noch geplanten Maßnahmen

Im Folgenden wird dargelegt, wie die Realisierbarkeit der noch geplanten Maßnahmen 
einzuschätzen ist. Die Berücksichtigung der Projektergebnisse in der Lehre an der TH OWL und
die Vorstellung von Ergebnissen in Standardisierungsorganisationen sind aus den in der 
Tabelle aufgeführten Gründen voraussichtlich nicht realisierbar. Die Evaluierung bei 
Anwendern, die Integration in Leitsysteme und die Information, Beratung und Qualifikation 
innerhalb von 1-2 Jahren nach Projektende erscheint realistisch, da diesbzgl. bereits konkrete 
Gespräche mit interessierten Unternehmen laufen. Die Demonstration der Projektergebnisse 
auf Industriemessen hängt davon ab, inwieweit dies Corona-bedingt möglich ist. Die in der 
Tabelle aufgeführten wissenschaftlichen Veröffentlichungen sind mit Ausnahme der 
Veröffentlichung zur LSTM-basierten Fehlererkennung bereits erstellt und teilweise 
angenommen worden. Es erscheint realistisch, auch die Projektergebnisse zur LSTM-basierten 
Fehlererkennung wie geplant in 2022 zu veröffentlichen. 


