
I

Schlussbericht
zu dem IGF-Vorhaben

Steigerung der Zuverlässigkeit von Maschinen und Anlagen durch automatisiertes
Testen von Fehlerbehandlungsroutinen in der Steuerungssoftware (ZuMaTra)

der Forschungsstelle
Lehrstuhl für Automatisierung und Informationssysteme, Technische Universität München

Das IGF-Vorhaben 16906 N der Forschungsvereinigung Elektrotechnik beim ZVEI e. V.

wurde über die

im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF)
vom

aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Garching 30.01.2015

 Prof. Dr.-Ing. Birgit Vogel-Heuser

Ort, Datum Name und Unterschrift des/der Projektleiter(s)
an der/den Forschungsstelle(n)

II

Steigerung der Zuverlässigkeit von Maschinen und
Anlagen durch automatisiertes Testen von Fehler-

behandlungsroutinen in der Steuerungssoftware (ZuMaTra)

Kurzfassung:
Die Zuverlässigkeit von Maschinen wird wesentlich von deren Steuerungssoftware bestimmt,
da diese Ausnahmesituationen, die z.B. in Folge von Sensor-/Aktorausfällen eintreten können,
behandelt. Die fehlerbehandelnden Softwareanteile und insbesondere Anteile zur Erkennung
von Fehlern bilden dabei einen Großteil der Steuerungssoftware, werden jedoch aufgrund
mangelnder Zeit bzw. fehlender Werkzeuge und Verfahren oft nur unzureichend getestet. Ob
diese für die Zuverlässigkeit der Maschine oder Anlage notwendigen Funktionen korrekt funk-
tionieren, wird dann erst bei Eintritt der jeweiligen Ausnahmesituationen im laufenden Betrieb
festgestellt. Um hohe Ausfallkosten und Schäden infolge fehlerhafter Ausnahmebehandlungen
zu vermeiden, ist daher ein Funktionsnachweis bereits vor oder während der Inbetriebnahme
anzustreben. Eine Lösung hierfür ist ein Verfahren, welches die notwendigen Testfälle zur
Überprüfung der Ausnahmebehandlungen automatisiert erzeugt. Ziel des Projekts war daher
die Erforschung eines Verfahrens, welches mit minimalem Engineering-Aufwand und maxima-
lem Automatisierungsgrad eine effektive Überprüfung der notwendigen Ausnahmebehand-
lungsroutinen in der Steuerungssoftware ermöglicht. Um das Verhalten des Steuerungscodes
auf Sensor-/Aktorausfälle testen zu können, wurde ein neuer Ansatz für die Fehlerinjektion in
den Steuerungscode entwickelt und zusammen mit existierenden Techniken zur automati-
schen Generierung und Ausführung von Testfällen auf die Software-Entwicklung in der Ferti-
gungstechnik angewandt. Fehlerinjektion wird im Projekt definiert als das absichtliche Herbei-
führen eines Fehlers in einem System, um dessen Reaktion darauf auszuwerten. Bislang exis-
tierten im Umfeld der Software-Entwicklung für Speicherprogrammierbare Steuerungen (SPS)
nur unzureichende Methoden der Fehlerinjektion.
Um den Aufwand der Testerstellung zu minimieren wurde ein modellbasierter Ansatz gewählt.
Nach einer Anforderungsanalyse wurde das Format eines Weg-Zeit-Diagramms als Basis für
den Ansatz gewählt, für die Modellierung von fertigungstechnischen Anlagen weiterentwickelt
und für die Testfallgenerierung optimiert. Basierend auf der Weg-Zeit-Diagramm-Notation
wurde ein Algorithmus entwickelt, der die wichtigsten Fehlerszenarien in der Fertigungstechnik
durch Manipulation von Sensoren abdeckt und eine Testausführung durch software-implemen-
tierte Fehlerinjektion für SPSen möglich macht. Die Ergebnisse der einzelnen Testläufe dienen
zugleich als Dokumentation und Nachweis der korrekten Funktion der Software. Der Ansatz
für die Testfallgenerierung und –automatisierung konnte innerhalb eines Workshops mit Hilfe
eines Funktionsmusters in Form eines Editors und Testfallgenerierungsalgorithmus mit den
Mitgliedern des Projektausschusses durchgeführt und evaluiert werden. Dementsprechend
konnte nicht nur der Nachweis der Machbarkeit, sondern auch der Nachweis der Anwendbar-
keit des Ansatzes für die Domäne der Fertigungstechnik erbracht werden. Das Forschungsziel
wurde nachweislich erreicht.

Berichtsumfang: 65 S., 38 Abb., 4 Tab., 41 Lit.
Forschungsvereinigung: ZVEI - Zentralverband Elektrotechnik- und Elektronik-

industrie e. V
Forschungsstelle: Lehrstuhl für Automatisierung und Informationssysteme,

Technische Universität München
Leiterin: Prof. Dr.-Ing. Birgit Vogel-Heuser
Bearbeiterin und Verfasserin: Susanne Rösch

III

Inhaltsverzeichnis

 Einleitung ... 1

 Problemstellung / Motivation ... 1

 Projekt ZuMaTra ... 2

1.2.1 Projektziele .. 2

1.2.2 Innovativer Beitrag der angestrebten Forschungsergebnisse 3

1.2.3 Zusammensetzung des Projektbegleitenden Ausschusses (PA) 3

1.2.4 Arbeitspakete (AP) ... 4

1.2.5 Arbeitsdiagramm .. 7

1.2.6 Notwendigkeit und Angemessenheit der geleisteten Arbeit 7

 Lösungsweg zur Erreichung des Forschungsziels .. 8

 Ist-Analyse im industriellen Umfeld zur Anforderungsverfeinerung 8

2.1.1 Auswertung einer Umfrage mit Teilnehmern aus der Industrie 8

2.1.2 Analyse von Anwendungsbeispielen aus der Industrie13

2.1.3 Untersuchung von Codier- bzw. Ausführungsrichtlinien17

 Vorrecherche Stand der Forschung und Entwicklung ...18

2.2.1 Statische Codeanalyse ..18

2.2.2 Fehlerinjektion ...19

2.2.3 Testen in der Automatisierungstechnik ..20

 Verfahren zur statischen Codeanalyse ...22

 Vorgehensweise für den Test von Fehlerbehandlungsroutinen25

2.4.1 Modellierungsverfahren für Komponenten (Abbildung 20, Nr. 1)26

2.4.2 Automatische Testfallgenerierung (Abbildung 20, Nr. 2)28

2.4.3 Automatisches Echtzeit-Testfallausführungsverfahren (Abbildung 20, Nr. 3) ...33

 Software-Funktionsmuster als Basis der Evaluierung ...35

2.5.1 Konzeption und Implementierung des Funktionsmusters35

2.5.2 Identifikation und Beschreibung der Werkzeugfunktionen35

2.5.3 Aufbau des Editors ..36

2.5.4 Codeanalyse im Editor ..37

2.5.5 Das Weg-Zeit-Diagramm, die Testfallgenerierung und Testtabelle im Editor ...38

2.5.6 Umsetzung ..38

 Evaluierung der Konzepte ..38

2.6.1 Evaluierung der Codeanalyse ...39

2.6.2 Evaluierung der Vorgehensweise für den Test von Fehlerbehandlungsroutinen
an einem Anwendungsbeispiel mit kontinuierlichen Prozessen40

2.6.3 Evaluierung der Vorgehensweise für den Test von Fehlerbehandlungsroutinen
in einem Workshop an einem Anwendungsbeispiel mit diskreten Prozessen44

2.6.4 Beantwortung eines Fragebogens zur Bewertung des Gesamtkonzepts48

IV

2.6.5 Zusammenfassung der Evaluierung ..51

 Ergebnistransfer in die Wirtschaft ...52

 Nutzen für KMUs ...55

 Zusammenfassung und Ausblick ...56

 Anhang ..57

 Literaturverzeichnis ..57

 Abbildungsverzeichnis ..59

 Tabellenverzeichnis ..60

 Anhang A ...60

 Verzeichnis Anhang CD ...61

1 Einleitung

1

 Einleitung

 Problemstellung / Motivation
Die Software nimmt im Maschinen- und Anlagenbau eine zentrale Rolle ein und stellt einen
wesentlichen Teil der Funktionserbringung dar. In zunehmendem Maße werden mehrere ver-
teilte Softwarekomponenten zur Umsetzung einer Funktion benötigt, was zu einer steigenden
Komplexität führt. Die Beherrschung der Komplexität dieser Funktionsübernahme der Soft-
ware innerhalb des Gesamtsystems erfordert die Integration der softwarerelevanten Aspekte
während der Systemplanungs- und entwicklungsphase. In [Mo00] wird gezeigt, dass Ausfälle
in fehlertoleranten Systemen lediglich in 8 % aller Fälle auf Hardwareschäden, hingegen 65 %
auf Softwarefehler zurückzuführen sind.

Die Entwicklung qualitativ hochwertiger Software ist heute mangels Werkzeugen zur durch-
gängigen Entwicklung enorm aufwendig, erfordert viel Zeit und zieht dementsprechend hohe
Kosten nach sich. Durch den immateriellen Charakter von Steuerungssoftware und die nur
schwer sichtbare Entwicklungskomplexität der Software fehlt häufig die Bereitschaft seitens
des Kunden, die zur Gewährleistung der Softwarequalität notwendigen Anstrengungen im En-
gineering, zu bezahlen, wodurch der Kostendruck bei den Herstellern der Maschinen und An-
lagen steigt. Nichtsdestotrotz sind die Kunden nicht bereit Einbußen was die Zuverlässigkeit
der Maschinen und Anlagen betrifft hinzunehmen.

Zuverlässigkeit setzt sich u.a. aus den Aspekten Reife, Fehlertoleranz und Wiederherstellbar-
keit zusammen (s. ISO/IEC 9126 bzw. DIN 66272). Diese Aspekte sind dabei wie folgt defi-
niert:

 Reife: Geringe Versagenshäufigkeit durch Fehlerzustände

 Fehlertoleranz: Fähigkeit, ein spezifiziertes Leistungsniveau bei Softwarefehlern oder
Nichteinhaltung ihrer spezifizierten Schnittstelle einzuhalten,

 Wiederherstellbarkeit: Fähigkeit, bei einem Versagen das Leistungsniveau wiederher-
zustellen und die direkt betroffenen Daten wiederzugewinnen.

Die Zuverlässigkeit von Maschinen und Anlagen wird wesentlich von deren Steuerungssoft-
ware bestimmt, da diese Ausnahmesituationen, die z.B. in Folge von Sensor-/Aktorausfällen
eintreten können, behandelt. Die fehlerbehandelnden Softwareanteile bilden einen Großteil
der Steuerungssoftware, werden jedoch aufgrund mangelnder Zeit bzw. fehlender Werkzeuge
und Verfahren oft nur unzureichend getestet. Fehlerbehandlungsroutinen werden zwar mit ho-
hem Aufwand erstellt, jedoch oft nicht explizit getestet, da die „Gut-Funktion“ der Maschine/An-
lage den Kern der Abnahme durch den Kunden darstellt. Die „Gut-Funktionen“ werden daher
kontinuierlich im Rahmen der Inbetriebnahme und in Vorbereitung eines Abnahmetests ge-
prüft. Darüber hinaus bleibt in der Inbetriebnahme oft nicht die Zeit, Fehlerbehandlungsrouti-
nen im notwendigen Umfang zu testen. Zur Sicherstellung der Systemzuverlässigkeit müssten
jedoch auch diese Softwareanteile getestet werden, die im Falle eines möglichen Hardware-
Ausfalls greifen sollten. Aufgrund des insgesamt vorherrschenden Kostendrucks, insbeson-
dere für die Softwareanteile von Maschinen und Anlagen, ist es jedoch nicht möglich, erwei-
terte manuelle Testverfahren einzusetzen. Umfangreichere Tests können nur dann kostende-
ckend durchgeführt werden, wenn diese im Wesentlichen automatisch ablaufen können. Ob
diese für die Zuverlässigkeit der Maschine oder Anlage notwendigen Funktionen korrekt funk-
tionieren, wird dann erst bei Eintritt der jeweiligen Ausnahmesituationen im laufenden Betrieb
festgestellt. Um hohe Ausfallkosten und Schäden infolge fehlerhafter Ausnahmebehandlungen
zu vermeiden, ist jedoch ein Funktionsnachweis bereits vor oder während der Inbetriebnahme
anzustreben. Eine Lösung hierfür ist ein Verfahren, welches die notwendigen Testfälle zur
Überprüfung der Ausnahmebehandlungen automatisiert erzeugt. Die somit generierten Test-
fälle müssen zur effizienten Abarbeitung in ihrer Anzahl und Komplexität beschränkt werden.
Ziel dieses Vorhabens ist daher die Erforschung eines Verfahrens, welches mit minimalem
Engineering-Aufwand und maximalem Automatisierungsgrad eine effektive Überprüfung der

1 Einleitung

2

notwendigen Ausnahmebehandlungsroutinen in der Steuerungssoftware ermöglicht. Um das
Verhalten des Steuerungscodes auf Sensor-/Aktorausfälle testen zu können, sollen neue An-
sätze der Fehlerinjektion in den Steuerungscode entwickelt und zusammen mit existierenden
Techniken zur automatischen Generierung und Ausführung von Testfällen auf die Software-
Entwicklung im Maschinen- und Anlagenbau angewendet werden. Bislang existieren im Um-
feld der Software-Entwicklung für Speicherprogrammierbare Steuerungen (SPS) keine pas-
senden Methoden der Fehlerinjektion für Sensor-/Aktorausfälle. Da die Zuverlässigkeit ihrer
Produkte für klein- und mittelständische Maschinen- und Anlagenbauer einen entscheidenden
Wettbewerbsfaktor darstellt, der heute noch notwendige zeitliche Aufwand für die Qualitätssi-
cherung jedoch kaum tragbar ist, soll bei diesem Projekt insbesondere die praktische Anwend-
barkeit für KMU berücksichtigt werden. Die Ergebnisse sollen außerdem Möglichkeiten für
weitere Werkzeugentwicklungen schaffen, die eine langfristige Basis für eine Steigerung der
Zuverlässigkeit und Sicherheit von Maschinen und Anlagen bieten und somit einen Wettbe-
werbsvorteil ermöglichen.

 Projekt ZuMaTra

1.2.1 Projektziele
Ziel des Projekts „Steigerung der Zuverlässigkeit von Maschinen und Anlagen durch automa-
tisiertes Testen von Fehlerbehandlungsroutinen in der Steuerungssoftware“ (ZuMaTra) ist
eine in der Praxis anwendbare und wissenschaftlich fundierte Methode bereitzustellen,
wodurch eine (teil-)automatische Überprüfung der korrekten Implementierung bzw. Funktion
der Behandlung von Ausnahmesituationen ermöglicht wird.

Um die Praxistauglichkeit des Ansatzes sicherzustellen, wurden zu Beginn des Projekts zum
einen eine ausführliche Anforderungsanalyse unter den Unternehmen durchgeführt zum an-
deren einige Anwendungsbeispiele aus den Unternehmen auf weitere Anforderungen und
Randbedingungen untersucht. Darüber hinaus wurden bestehende Ansätze auf deren An-
wendbarkeit hin überprüft.

Um die Herausforderungen im Kontext einer Überprüfung von Fehlerbehandlungsroutinen der
Steuerungssoftware im Maschinen-/Anlagenbau zu beherrschen, wurden im Projekt zentrale,
dafür notwendige Aspekte, wie die modellbasierte Testfallgenerierung und die statische Code-
analyse, in einem Ansatz vereint.

Dazu sollte auf Basis der ermittelten Anforderungen ein Modellierungsansatz entwickelt wer-
den, der eine automatische Testfallgenerierung basierend auf ebenfalls ermittelten und im Pro-
jekt definierten Fehleroperatoren ermöglicht. Diese Fehleroperatoren sind verknüpft mit Mus-
tern in der Verhaltensmodellierung der Software einer Maschine (z.B. steigende Flanke eines
binären Sensors) und erlauben so die Identifikation von potenziellen Fehlerszenarien, die
durch einen Testfall zu überprüfen sind. Darauf aufbauend wurde ein Verfahren zur automati-
schen Generierung sowie Ausführung identifizierter Testfälle entwickelt.

Die bei der Anforderungsermittlung aufgedeckten Randbedingungen sollten außerdem die
Überprüfung von Fehlerbehandlungen durch statische Codeanalyse ermöglichen.

In dem hier vorgestellten Ansatz ist die Überprüfung von IEC 61131-3 Steuerungssoftware
[IEC03] das grundsätzliche Anwendungsfeld. Die untersuchte Ausführung der vorher erstellten
Testfälle muss in Interaktion mit der Steuerung stehen und unter Echtzeitbedingungen abge-
arbeitet werden. Um die Fehlerbehandlungsroutinen des Steuerungscodes überprüfen zu kön-
nen, werden Fehler automatisch in das System injiziert. Dabei kann die Interaktion abhängig
von einem jeweiligen Einsatzszenario und der Kritikalität der Anlage gegenüber einer realen
oder simulierten Maschine stattfinden. Um die Robustheit fehlertoleranter Systeme testen zu
können, müssen potentiell auftretende Hardware-Fehler (Ausnahmesituationen) in Tests er-
zwungen werden. Die aktuell existierenden Ansätze der Fehlerinjektion werden für das Erzeu-
gen von Speicherfehlern verwendet, um während des Testdesigns berücksichtigte Fehler zu
erzwingen. In ZuMaTra werden diese Technik in Testfällen verwendet, die beispielsweise auf

1 Einleitung

3

Fehleranalysen (bspw. FMEA [FME09]) oder anderen geeigneten Notationen für die Anwen-
dungsbeispiele basieren.

Die Fehlerinjektion soll gegenüber einer simulierten oder auch realen Anlage durchgeführt
werden können. Je nach Art der generierten Testfälle setzen diese ähnliche oder unterschied-
liche Startzustände des Gesamtsystems voraus.

Um das Potential des Ansatzes aufzuzeigen, wurde ein Funktionsmuster, welches sowohl die
Codeanalyse als auch der Test von Fehlerbehandlungsroutinen unterstützt, umgesetzt. Das
Funktionsmuster konnte für eine ausführliche Evaluierung der Ergebnisse dienen.

1.2.2 Innovativer Beitrag der angestrebten Forschungsergebnisse
Bislang existieren keine Ansätze oder Werkzeuge, die es erlauben die Fehlerbehandlungsrou-
tinen von Maschinen und Anlagen automatisiert und damit kostengünstig zu testen. Der Ein-
satz der angestrebten Forschungsergebnisse ermöglicht letztendlich eine effizientere Entwick-
lung, da durch die Testautomatisierung die Effizienz bei sowohl der Testfallerstellung als auch
der Testdurchführung erheblich erhöht wird. Die bislang erst während des Betriebs aufgetre-
tenen Softwarefehler werden somit schon während der Entwicklung erkannt und korrigiert. Die
Entwicklung eines solchen Ansatzes bietet für kleine und mittelständische Maschinen- und
Anlagenbauer erstmalig die Möglichkeit, die Steuerungssoftware ihrer Anlage auch für Aus-
fallsituationen mit geringem Mehraufwand zu testen und damit die Zuverlässigkeit ihrer Ma-
schinen und Anlagen erheblich zu steigern. Dies hat unmittelbar zur Folge, dass die Inbetrieb-
nahmezeiten verkürzt und der Zuverlässigkeitsnachweise strukturiert dokumentiert werden
kann. Anbieter von Software-Werkzeugen, insbesondere Hersteller von Programmierumge-
bungen für Steuerungen, können die erforschten Verfahren und Algorithmen für die Entwick-
lung innovativer Produkte heranziehen.

Darüber hinaus können Dienstleister und Ingenieurbüros (größtenteils kleine Unternehmen),
die sich auf die Erstellung von Steuerungssoftware spezialisiert haben, ihr Angebot erweitern
bzw. die Qualität der angebotenen Dienstleistungen erheblich steigern. Hierdurch können sie
sich gegenüber der Konkurrenz aus Ländern mit geringerem Lohnniveau deutlich absetzen.
Für eine praxisnahe und erfolgsversprechende Umsetzung bedarf es einer Betrachtung aus
unterschiedlichen Domänen. Die Konstellation des projektbegleitenden Ausschusses (PA) aus
Unternehmen des Maschinen- und Anlagenbaus, Softwareentwicklern, Beratungsunterneh-
men im Maschinen- und Anlagenbaum, Gerätetechniker und Betreiber (Gerätehersteller ver-
wenden Maschinen um ihre Produkte herzustellen) stellt die Ausgangsbasis für eine lücken-
lose Erarbeitung praxistauglicher Ergebnisse unter Berücksichtigung aller Anspruchsgruppen
dar.

1.2.3 Zusammensetzung des Projektbegleitenden Ausschusses (PA)
Der projektbegleitende Ausschuss (PA) setzt sich aus Unternehmen aller betreffenden An-
spruchsgruppen zusammen:

• Anbieter von Software-Werkzeugen und Beratung im Bereich Software

• Anbieter von Steuerungs-, Antriebs,- und Gerätetechnik

• Unternehmen des Maschinen- und Anlagenbaus mit Steuerungsprogrammierung

• Maschinenbetreiber als Kunde der Maschinen- und Anlagenbauer

Hierbei treten die nicht KMU in unterschiedlichen Rollen auf: Festo, Phoenix Contact und
Bosch sind zum einen Anbieter von Steuerungskomponenten, produzieren diese aber auch
selbst mit eigenen Maschinen, die von einer internen Maschinenbauabteilung entwickelt wer-
den.

Der deutsche Automatisierungsmarkt wird heute im Wesentlichen durch einige wenige Her-
steller bestimmt. Insbesondere die Produkte der Firma Siemens dominieren. Jedoch konnten
in den letzten Jahren auch kleinere Unternehmen einen starken Anstieg ihrer Marktanteile

1 Einleitung

4

verzeichnen. Dies trifft insbesondere auch auf Anbieter von Steuerungskomponenten wie
bspw. Beckhoff, Phoenix Contact oder Schneider zu. Viele dieser Anbieter stützen sich auf
das Programmiersystem CODESYS der Firma 3S-Smart-Software-Solutions. Durch die Ein-
beziehung der Firmen 3S-Smart-Software-Solutions und anderen Anbietern wie z.B. Phoenix-
Contact (die in Deutschland ebenso einen bedeutenden Marktanteil haben) wird in diesem
Projekt eine hohe Abdeckung hinsichtlich der für Deutschland relevanten Anbieter von Pro-
grammierumgebungen für Steuerungen erreicht.

Abbildung 1: Struktur des projektbegleitenden Ausschusses

1.2.4 Arbeitspakete (AP)
Die Arbeitspakete wurden zur Erreichung der unter den Forschungszielen formulierten Ziel-
stellungen eingeteilt:

AP 0: Vorgehensweise und Vorrecherchen im Projekt

Durch eine ausführliche Recherche und Bewertung existierender Technologien, Teillösungen
und zu berücksichtigender Standards wurde die Grundlage für die weitere Ausarbeitung der
Zielstellung und der weiteren Arbeitsschritte gelegt. Bei der Bearbeitung der einzelnen Arbeits-
schritte wurde ein besonderer Fokus auf die praxisnahe Ausrichtung der Zielsetzung gelegt.
Dabei wurden in den regelmäßigen Projekttreffen die Anforderungen und spezifischen Anwen-
dungsfälle der Unternehmen im PA abgefragt und gemeinsam diskutiert. Mit dem Ziel den
Aufwand der Unternehmen (KMU im speziellen) für an das Forschungsprojekt anknüpfende
Entwicklungen niedrig zu halten, wurden die im wissenschaftlichen Umfeld analysierten exis-
tierenden oder neu entwickelten Methoden praxisgerecht aufbereitet. Um aufbauende Ent-
wicklungen zu fördern, verbreitet die Forschungsstelle die Forschungsergebnisse praxisbezo-
gen in Veröffentlichungen.

AP 1: Modellierungsverfahren für Komponenten und deren Ausfälle im Kontext des Steue-
rungscodes

Grundlage des AP 1 stellten die in AP 0 definierten Anforderungen und Randbedingungen dar.
Einer Untersuchung, welche Notationen bei den Unternehmen ihren Einsatz finden und für die
Testfallgenerierung geeignet sind, ergab, dass das Weg-Zeit-Diagramm grundsätzlich geeig-
net ist. Dies wurde entsprechend weiterentwickelt und angepasst um den Anforderungen voll
zu genügen. Als Ergänzung zum Weg-Zeit-Diagramm wurde die „Failure Mode and Effects
Analysis“ (FMEA), welche eine Betrachtung der Systemkomponenten mit den ihnen zuzuord-

1 Einleitung

5

nenden Ausfallwahrscheinlichkeiten und Kritikalitäten ermöglicht, gewählt. Um den Testauf-
wand zu reduzieren, kann so die Menge der zu erzeugenden Testfälle anhand dieser Para-
meter skaliert werden.

Es wurde erfolgreich ein Modellierungsansatz entwickelt.

Personaleinsatz HPA A: 6 PM

AP 2: Verfahren zur Extraktion eines sprachneutralen Kontrollflussmodells

Ziel dieses Arbeitspakets war die Erforschung eines Verfahrens welches den implizit z.B.
durch Schleifen, Sprünge und Alternativ-Entscheidungen (IF-THEN-ELSE, CASE) definierten
Kontrollfluss aus einem gegebenen Steuerungsprogramm extrahieren und in ein sprachneut-
rales Automatenmodell überführen kann. Für die Untersuchung mittels statischer Codean-
alanalyse ist die einheitliche Repräsentation der unterschiedlichen IEC 61131-3 Programmier-
sprachen eine wichtige Herausforderung. Eine einheitliche Darstellung wurde insbesondere
für die Sprachen Strukturierter Text (ST), Ablaufsprache (AS) (siehe Anhang CD: Meilenstein
2) und außerhalb des Projekts in einer assoziierten Bachelorarbeit für Funktionsblockdia-
gramme (FBD) [Ta14] untersucht.

Das Verfahren konnte erfolgreich entwickelt werden.

Personaleinsatz HPA A: 5 PM; HPA B: 2 PM

AP 3: Verfahren zur statischen Code-Analyse

Ziel dieses Arbeitspakets war die Erforschung eines statischen Code-Analyseverfahrens mit
dem die in AP 0 identifizierten Regeln für die Überprüfung der Steuerungssoftware überprüft
werden können. Hierfür wurden einfache Templates für die Spezifikation der Regeln und ein
Algorithmus zur Überprüfung der spezifizierten Regeln am Kontrollfluss entwickelt.

Das Verfahren konnte erfolgreich für die Überprüfung von Codierrichtlinien, nicht jedoch für
die Testfallgenerierung entwickelt werden.

Personaleinsatz HPA A: 4 PM; HPA B: 1 PM

AP 4: Automatisches Testfallgenerierungsverfahren

Ziel dieses Arbeitspakets war die Anwendung bzw. Adaption von Testfallgenerierungsverfah-
ren. Das Generierungsverfahren entspricht allen nach AP 0 definierten relevanten Situationen,
in denen ein Komponentenausfall ein alternatives Verhalten auslösen kann. Ein Testfall oder
mehrere Testfälle liefern durch deren Ausführung die Möglichkeit einer Beurteilung, ob die
Fehlererkennung und Fehlerbehandlung korrekt funktioniert.

Das automatische Testfallgenerierungsverfahren konnte erfolgreich entwickelt werden.

Personaleinsatz HPA A: 6 PM

AP 5: Automatisches Echtzeit-Testfallausführungsverfahren

In dem Gesamtansatz sollen Testfälle einerseits automatisch erzeugt werden (s. AP 4) und
andererseits soll auch die Ausführung automatisiert werden. Dafür wurde in diesem Arbeits-
paket ein Verfahren zur automatischen Initialisierung, Ausführung und Protokollierung von
Testfällen erforscht, welches in Kontext von Echtzeit-Anforderungen auf industriellen Steue-
rungen angewendet werden kann. Eine zentrale Herausforderung stellt dabei die wiederhol-
bare Herstellung notwendiger Ausgangszustände des Gesamtsystems (Maschine/Anlage und
Software) dar, um für spätere Regressionstests Veränderungen in der Steuerungssoftware
sicher beurteilen zu können.

Das automatische Echtzeit-Testfallausführungsverfahren konnte erfolgreich entwickelt wer-
den.

Personaleinsatz HPA A: 2 PM

AP 6: Software-Funktionsmuster als Basis der Evaluierung

1 Einleitung

6

Ziel dieses Arbeitspakets war die softwaretechnische Umsetzung der in Arbeitspaket 1 bis 5
erforschten Verfahren im Sinne eines Funktionsmusters als Grundlage für die Evaluierung des
Gesamtansatzes. Die softwaretechnische Umsetzung berücksichtigt soweit möglich - und für
den grundsätzlichen Funktionsnachweis des Verfahrens (s. AP 7) notwendig - geltende Stan-
dards (PLCopen XML und UML).

Das Funktionsmuster konnte erfolgreich umgesetzt werden.

Personaleinsatz HPA A: 6 PM; HPA B: 12 PM

AP 7: Evaluation des Gesamtansatzes

Im abschließenden Arbeitspaket wurde das im Projekt entwickelte Gesamtkonzept an einem
der Forschungseinrichtung und zwei in der Industrie vorhandenen Demonstratoren evaluiert.
Diese Demonstratoren decken die Systemklassen diskreter und hybrider Prozess ab.

Basis für die Evaluation ist das in AP 6 erarbeitete Software-Funktionsmuster, welches die
Verfahren anwendbar und bewertbar macht.

Fragestellungen des Evaluationsprozesses sind hierbei z.B.:

 Unter welchen Randbedingungen sind die vorgeschlagenen Verfahren technisch an-
wendbar?

 Wie hoch ist der zusätzliche Aufwand für den Maschinen-/Anlagenbauer?

 Welchen Einfluss hat die Anwendung der Lösung auf die Zuverlässigkeit der Ma-
schine/Anlage?

Die Evaluation wurde erfolgreich durchgeführt.

Personaleinsatz HPA A: 4 PM

AP 8: Projektsteuerung, Vorstellung von Projektergebnissen, Anfertigung von Berichten

Dieses Arbeitspaket erstreckte sich über die gesamte Projektlaufzeit und wurde parallel zu
allen anderen Arbeitspaketen bearbeitet. Neben den administrativen Aufgaben der Organisa-
tion und Kontrolle des Projektverlaufs wurden in diesem Arbeitspaket die Aufwendungen für
die Vor-/Nachbereitungen von Projekttreffen mit dem Projektbeirat zusammengefasst. Die Er-
gebnisse der jeweiligen Aufgabenpakete wurden zentral organisiert und transparent an den
projektbegleitenden Ausschuss kommuniziert.

Des Weiteren wurden in diesem Arbeitspaket alle Aufgaben zum Ergebnis- und Wissenstrans-
fer an den PA und die Industrie bearbeitet. In diesen Aufgabenbereich fallen auch die Anferti-
gungen von Veröffentlichungen in Fachzeitschriften und Konferenzen, sowie die Präsentation
der Forschungsergebnisse auf Messen.

Die Vorstellung der Projektergebnisse wurde in vollem Umfang erreicht.

Personaleinsatz HPA A: 3 PM

1 Einleitung

7

1.2.5 Arbeitsdiagramm

Abbildung 2: Projektplan (Laufzeit des Projektes 01.01.2012 – 30.09.2014)

1.2.6 Notwendigkeit und Angemessenheit der geleisteten Arbeit
Die in AP1 durchgeführten Arbeiten waren notwendig um die Grundlagen für ein anwendungs-
nahes und gut verständliches Modell für die Testfallgenerierung zu erreichen. Die Arbeit wurde
von dem PA als angemessen bewertet (siehe Evaluation bezüglich des Modells in den Ab-
schnitten 2.6.2, 2.6.3, 2.6.4).

Die in AP2 und AP3 durchgeführten Arbeiten waren notwendig um die in der Ist-Analyse ge-
stellten Anforderungen (siehe 2.1) an die Überprüfung von Codierrichtlinien zu erfüllen. In AP2
wurde die Extraktion von IEC 61131-3 Code in einen Kontrollfluss untersucht, in AP3 die Über-
prüfung der Regeln realisiert.

Die in AP4 und AP5 geleisteten Arbeiten waren notwendig um aufbauend auf dem in AP1
entwickelten Modellierungsansatz Testfälle entsprechend der Anforderungen (siehe 2.1) zu
generieren und auszuführen. Die Machbarkeitsstudien (siehe 2.6.2, 2.6.3) zeigen die erfolg-
reiche Umsetzung und damit die Angemessenheit der Arbeiten.

Das in AP6 umgesetzte Funktionsmuster trägt maßgeblich zur Evaluation und damit zur Er-
gebniseinschätzung der Industrieunternehmen bei. Die Veröffentlichung des Funktionsmus-
ters auf einer Website (siehe Ergebnistransfer) zeigt die angemessene Umsetzung des Ansat-
zes und ermöglicht eine weitere Verbreitung des Ansatzes.

Die in AP7 durchgeführte Evaluation wurde über den im Antrag gestellten Anforderungen er-
füllt und nicht nur an Laboranlagen sondern auch an Maschinen des Industrieunternehmen
durchgeführt, womit eine deutlich bessere Ergebniseinschätzung in der Wirtschaft ermöglicht
wurde.

Die in AP8 durchgeführten Arbeiten zur Veröffentlichung der Projektergebnisse waren für eine
Verbreitung der Ergebnisse notwendig und wurden entsprechend den in Abschnitt 2.7 be-
schriebenen Maßnahmen umgesetzt.

AP W
iss

en
sc

ha
ftle

r (
PM)

Pro
gra

mm
iere

r (
PM

)

Ja
n 1

2

Feb 1
2

M
rz

12

Apr
 1

2

M
ai

12

Ju
n 1

2

Ju
l 1

2

Aug
 12

Sep
 12

Okt
12

Nov
 12

Dez
 12

Ja
n 1

3

Feb 1
3

M
rz

13

Apr
 1

3

M
ai

13

Ju
n 1

3

Ju
l 1

3

Aug
 13

Sep
 13

Okt
13

Nov
 13

Dez
 13

Ja
n 1

4

Feb 1
4

M
rz

14

Apr
 1

4

M
ai

14

Ju
n 1

4

Ju
l 1

4

Aug
 14

Sep
 14

36 15 Summe PM

Legende halber Monat

2

1

1

2

3

4

5

6

5

4

6

2

1. Wissenschafter 2. Wissenschaftler Fachinformatiker

6

7

8

6

4

3

12

2 PM verteilt über Projektlaufzeit, 1 PM zu Projektende für Abschlussbericht/Veröffentlichungen und Transfer

2 Lösungsweg zur Erreichung des Forschungsziels

8

 Lösungsweg zur Erreichung des Forschungsziels

Im Folgenden werden die in den verschiedenen Arbeitspaketen entwickelten Konzepte und
Funktionsmuster dargestellt. In Kapitel 2.1 werden die in AP 0 untersuchten Anforderungen
für den Einsatz der Methodik in der Industrie und in Kapitel 2.2 die Untersuchung existierender
Verfahren aufgezeigt. In Kapitel 2.3 wird das in AP 3 und 4 entwickelte Verfahren für die stati-
sche Codeanalyse erläutert. Kapitel 2.4 umfasst die Ergebnisse der entwickelten Methode für
die Modellierung (AP 1), Testfallgenerierung (AP 4) und Testausführung (AP 5). Die Umset-
zung der Methode in einem Funktionsmuster wird in Kapitel 2.5 dargelegt. Die Evaluierung
(AP 7, Kapitel 2.6) und Zusammenfassung (Kapitel 3) schließen den Abschlussbericht ab.

 Ist-Analyse im industriellen Umfeld zur Anforderungsverfeinerung
Im Folgenden werden aktuelle Vorgehensweisen anhand einer Ist-Analyse in Form eines Fra-
gebogens und einer Untersuchung von Anwendungsbeispielen aus dem industriellen Umfeld
des Projektbegleitende Ausschusses (PA) vorgestellt. Die Anwendungsbeispiele sind zum ei-
nen die Steuerungssoftware von vier Unternehmen des Projektausschusses zum anderen
zwei Codierrichtlinien aus zwei Unternehmen.

Aus der Umfrage wurden die zentralen Anforderungen an den Ansatz des Projekts ZuMaTra
abgeleitet und die Forschungsziele angepasst und verfeinert. Dabei wurden neun Mitglieder
des PAs und somit eine Stichprobe von sowohl Dienstleistern, als auch Anwendern aus der
Maschinenbauindustrie befragt.

Die Software-Anwendungsbeispiele und Codierrichtlinien wurden auf weitere Randbedingun-
gen an den Ansatz und insbesondere auf Randbedingungen für einen automatisierten Test
und die Codeanalyse untersucht.

2.1.1 Auswertung einer Umfrage mit Teilnehmern aus der Industrie
Im Folgenden werden die Ergebnisse der Umfrage mit 8 Teilnehmern aus 7 Unternehmen
präsentiert. Die an der Umfrage teilnehmenden Unternehmen sind in der Abbildung 3 aufge-
listet:

Abbildung 3: Teilnehmer der Umfrage

Momentan werden 25-30% der gemessenen Zeit an den gesamten Softwareentwicklungs-
stunden für das Testen der Steuerungssoftware aufgewendet. Daher ist es notwendig, dass
für den zusätzlichen Test von Fehlerbehandlungsroutinen so wenig Zeit wie möglich aufge-
wendet werden muss. Folglich wurde folgende Anforderung formuliert:

A1: der Automatisierungsgrad der Testerstellung und –ausführung muss möglichst hoch sein.

In den Abbildungen 4 und 5 werden die Ergebnisse des aktuellen industriellen Testumfelds
dargestellt: Während alle Unternehmen direkt am Arbeitsplatz Tests durchführen und über die

2 Lösungsweg zur Erreichung des Forschungsziels

9

Hälfte vor Ort, wird am Teststand nur in wenigen Fällen getestet. Besonders bei der Entwick-
lung des Prototyps, bei Implementierung und während der Inbetriebnahme wird getestet, wo-
gegen Tests direkt nach der Entwicklung unüblich sind. Dies ist vermutlich insbesondere auf
fehlende Simulationsmodelle zurückzuführen. Der Ansatz muss also eine

A2: Durchführbarkeit sowohl gegen eine Simulation als auch gegen die reale Maschine

aufweisen.

Abbildung 4: Testort

Abbildung 5: Tests nach Entwicklungsphase

Im zweiten Teil der Umfrage wurde der Abdeckungsgrad der Softwaretests analysiert. Dieser
variiert stark (∅ 40-60%) und liegt daher weit unter der Zielgröße von 100%. Die Möglichkeit
zur manuellen, iterativen Detailierung der Tests ist erwünscht (siehe Abbildungen 6). Das Be-
schreibungsmittel muss daher eine möglichst

A3: freie Wahl des Abstraktionsgrades bei der Modellierung

aufweisen.

Abbildung 6: Bewertung der Möglichkeit zur manuellen und iterativen Verfeinerung der
Tests.

Die Frequenz der Testanpassungen aufgrund geringer Änderungen und die daraus resultie-
rende Verwaltung erzeugt einen nennenswerten Aufwand für die Unternehmen (siehe Abbil-
dung 7). Daher folgt:

A4: die Neugenerierung von Testfällen und Anpassung von Modellen als Grundlage für die
Generierung muss möglich sein.

2 Lösungsweg zur Erreichung des Forschungsziels

10

Abbildung 7: Häufigkeit der Softwareänderungen und Bewertung des Aufwands für die
daraus resultierende Verwaltung

Im Hinblick auf die Detailierung des Testberichtes ist je nach Anwendungsbereich eine stich-
probenartige bis vollständige Dokumentation aller Tests (v.a. Pflichtenheftanforderungen müs-
sen abgedeckt sein) nötig. Die Bedeutung der Dokumentation bezüglich der Aspekte Bestim-
mung und

A5: Nachweis des Abdeckungsgrades der Anforderungen, sowie der Dokumentation für den
Kunden

ist für die Teilnehmer von Relevanz (siehe Abbildung 8).

Abbildung 8: Bedeutung der Dokumentation

Bezüglich Relevanz von Simulation und Simulationsmodellen beim Testen wurde festgestellt,
dass

 als Mehraufwand max. ~20% der Softwareentwicklungsstunden für ein Simulationsmo-
dell möglich sind,

 die Simulation je nach Teilbereich realistisch, d.h. mit hohem Detailierungsgrad, sein
muss oder nur relevante Maschinenzustände und Übergangszeiten beinhalten soll.

Die Simulation des Bedienerverhaltes ist wichtiger als die des Werkstücks für die Testfallaus-
führung. Letzteres ist nur von mäßiger Relevanz (siehe Abbildung 9):

Abbildung 9: Relevanz der Simulation des Bedienerverhaltens und des Werkstücks

2 Lösungsweg zur Erreichung des Forschungsziels

11

Die Aussage, dass neben dem Gut-Verhalten der Test des Schlecht-Verhaltens genauso wich-
tig ist, zeigt den Bedarf nach neuen Methoden für den Test dieser noch einmal in besonderer
Weise auf (siehe Abbildung 10). Ziel muss es also sein eine Methodik für den

A6: Test von relevanten Fehlerszenarien

zu entwerfen.

Abbildung 10: Testziel

Um die Einführungsbarrieren der neuen Methodik möglichst gering zu halten, wurde das Ziel
verfolgt auf bereits etablierte Beschreibungssprachen zurückzugreifen. Funktionsbeschreibun-
gen, textuelle Programmiersprachen, Schrittketten, Weg-Zeit-Diagramme und State Charts
sind für mehr als die Hälfte der Unternehmen als Informationsquellen für die Testfallgenerie-
rung relevant. Auch die beiden weiteren Informationsquellen, Anforderungstabelle und Ab-
laufsprache, werden von 3 der 7 Unternehmen eingesetzt. (siehe Abbildung 11).

Da das Weg-Zeit-Diagramm als graphisches Beschreibungsmittel leicht anpassbar und forma-
lisierbar für die Testfallgenerierung ist, wurde diese Notation als Basis für die Testfallgenerie-
rung gewählt. Die Anforderung nach einer

A7: Testfallgenerierung aus Weg-Zeit-Diagrammen

muss also, nach Konsens des projektbegleitenden Ausschusses, erfüllt werden.

Abbildung 11: Informationsquellen zur Testfallgenerierung

Im Wesentlichen führen folgende Fehler in der Entwicklung zu Verzögerungen bei der Inbe-
triebnahme und zu Fehlverhalten im Betrieb:

2 Lösungsweg zur Erreichung des Forschungsziels

12

 Nicht eindeutige Spezifikation von Kundenanforderungen
o Fehlende Definition von Testfällen
o Mängel in der Ablaufbeschreibung

 Nicht dokumentiertes Verhalten, Funktionen oder Abläufe
o Schnittstellen zur Installation
o Schnittstellen zwischen Hard- und Software (Sensorverhalten bei Über- und

Unterspannung)
o Verhalten bei unerwarteten Störungen

 Mangelhafte Auswahl oder Auslegung von Sensoren oder Aktoren
 Softwarefehler bei

o Typumwandlungen
o Scheduling-Vorgaben
o oder bei unzureichenden Parameterüberprüfungen

Die Fehlerursachen sind gleichermaßen auf Prozessfehler, mechanische Fehler, Fehler in der
Sensorik und Aktorik, der Software und Bedienerfehlern zurückzuführen (Abbildung 12).

Abbildung 12: Lokalisierung typischer Fehlerarten

Als Werkzeuge zur Komponentenbeschreibung setzen 6 von 8 Teilnehmern (Prozess-)FMEA
ein. Die darin enthaltenen Informationen werden in der Abbildung 13 beschrieben. 3 der 7
Teilnehmer beschreiben Informationen über die Abhängigkeit zu anderen Komponenten und
über die Ausfallwahrscheinlichkeit. Die weiteren Aspekte (Schnittstellen zur Steuerungssoft-
ware und die Ausfallbeobachtungswahrscheinlichkeit) werden kaum verwendet. Eine vertie-
fende Diskussion ergab, dass die FMEA hauptsächlich für die Untersuchung von Fehlern der
Elektronik oder für Produktfehler eingesetzt wird, nicht jedoch für die Beschreibung von Fehler-
ursachen, die von der Steuerungssoftware behandelt werden müssen. Folglich wurde mit dem
Projektausschuss eine

A8: optionale Verwendung der FMEA für die Priorisierung der Testfälle

postuliert. Der Aufwand einer durchgängigen Erstellung von FMEA für alle Komponenten
wurde als zu aufwändig eingestuft.

2 Lösungsweg zur Erreichung des Forschungsziels

13

Abbildung 13: Informationen der Werkzeuge für die Komponentenbeschreibung

Zusammenfassend ergeben sich aus der Umfrage unter den Unternehmen folgende gesam-
melte Anforderungen:

2.1.2 Analyse von Anwendungsbeispielen aus der Industrie
Neben der allgemeinen Umfrage für die Ermittlung der Anforderungen wurden 4 Anwendungs-
beispiele aus der Industrie für die Ermittlung weiterer Randbedingungen durchgeführt. Der Fo-
kus bei der Untersuchung lag auf folgenden Gesichtspunkten:

 Allgemeiner Aufbau des Fehlermanagements und der Fehlerbehandlung
 Arten von Fehlern die behandelt werden
 Aufbau von Fehlererkennungsmechanismen
 Art der Fehlerbehandlung für die verschiedenen Fehler

Untersucht wurden dabei 4 Anwendungsbeispiele aus 4 unterschiedlichen Unternehmen, die
sowohl kontinuierliche als auch diskrete Prozesse enthielten:

– Beispiel A (Siemens: Kontaktplan (KOP) + Anweisungsliste (AWL))

• Transportsystem (mit zwei synchronisierten Bänder) mit Werkstückträ-
gern: diskrete Prozesse

• Ca. 200 Programmorganisationseinheiten (POUs)

– Beispiel B (SoMachine: Funktionsbausteinsprache (FBD) + Strukturierter Text
(ST))

A1: der Automatisierungsgrad der Testerstellung und –ausführung muss möglichst hoch
sein.

A2: Durchführbarkeit sowohl gegen eine Simulation als auch gegen die reale Maschine

A3: freie Wahl des Abstraktionsgrades bei der Modellierung

A4: die Neugenerierung von Testfällen und Anpassung von Modellen als Grundlage für die
Generierung muss möglich sein

A5: Nachweis des Abdeckungsgrades der Anforderungen sowie der Dokumentation für den
Kunden

A6: Test von relevanten Fehlerszenarien

A7: Testfallgenerierung aus Weg-Zeit-Diagrammen

A8: optionale Verwendung der FMEA für die Priorisierung der Testfälle

2 Lösungsweg zur Erreichung des Forschungsziels

14

• Pflasterverpackungsmaschine mit 2 Teilen: 1. Teil kontinuierliche + 2.
Teil diskrete Prozesse

• Ca. 450 POUs

– Beispiel C (TwinCat 2 & 3 : ST)

• Kleine Sortieranlage: diskrete Prozesse

• Ca. 20 POUs

– Beispiel D (TwinCat 3: Ablaufsprache (AS) + ST)

• O-Ring-Montage: diskrete Prozesse

• Ca. 100 POUs

Bei der Untersuchung konnten die folgenden Erkenntnisse gewonnen werden. Der Aufbau des
Fehlermanagements folgt, ebenso wie der Aufbau der restlichen Software, einer hierarchi-
schen Struktur. Die Fehlererkennung erfolgt in den meisten Fällen auf unterster Baustein-
ebene von Bausteinen, die die Funktion einer Komponente steuern (siehe Abbildung 14). Auf
dieser Ebene wird entschieden, ob der Fehler auf die nächste Hierarchieebene (Steuerung
mehrerer Komponenten – Station) weitergeleitet oder lokal behandelt wird. In den meisten
Fällen wird der Fehler weitergegeben und es wird eine entsprechende Fehlermeldung gesetzt.
Auch auf Stationsebene kann der Fehler lokal behandelt werden, wird jedoch in den unter-
suchten Beispielen ebenfalls meist weitergeleitet und in einem separaten Baustein, der für das
Fehlermanagement zuständig ist, ausgewertet. Die Fehlermanagement-Bausteine sind in der
Regel für die Erkennung von Sammelfehlern und die Entscheidung, welche Fehlerbehandlung
eingeleitet wird, zuständig, welche dann an alle Bausteine durch das Setzen einer Variablen
getriggert wird (z.B. Heimlaufstopp).

Applikation

Kompo-
nente

Station

Kompo-
nente

Kompo-
nente

Station

Kompo-
nente

Fehlermanagement

Fehler

HMI Error
Watch

Sammelfehler

Fehlerbehandlung
Gesamtmaschine

Überwachung intelligente
Feldgeräte (z.B. Antriebe) Main

Abbildung 14: Fehlerbehandlung von Steuerungssoftware

Da bei dem Ansatz spezifische Szenarien getestet werden sollen, muss die Maschine hierfür
in eine bestimmte Ausgangssituation gebracht werden. Alle Anwendungsbeispiele haben eine
solche definierte Grundstellung, von der aus der Automatikmodus gestartet werden kann. Dar-
über hinaus wurde eine wichtige Erkenntnis bei der Untersuchung dieser Stellung aus den
Anwendungsbeispielen gewonnen.

2 Lösungsweg zur Erreichung des Forschungsziels

15

RB 1: Alle Anwendungsbeispiele enthalten Routinen für eine Grundstellungsfahrt/ Referenz-
punktfahrt/ Reset.

Es können von den Testfällen also bereits definierte Routinen genutzt werden, um nach einer
Fehlerinjektion wieder in einen definierten Zustand zu gelangen. Eine separate Implementie-
rung für die Testfälle ist nicht notwendig.

Eine weitere Untersuchung der Routinen zu Grundstellungsfahrten ergab, dass hierfür bei ei-
nigen Anwendungsbeispielen manuelle Operatoreneingriffe notwendig sind. Daher wurde fol-
gende Randbedingung aufgenommen:

RB 2: manuelle Eingriffe durch den Operator während der Testausführung müssen spezifizier-
bar sein.

Von den Ursachen, die zum Versagen eines Automatisierungssystems führen können, werden
die in Abbildung 15 blau markierten von der Steuerungssoftware erkannt und behandelt.

Versagen eines
Automatisierungs

systems

physikalisch

inhärent
nicht-

inhärent

menschlich

Ausfälle (Bauelemente)
Elektromagn. Störungen
Software-Verfälschung

Bedienfehler
Wartungsfehler

Absichtliche Fehler

Produktfehler

Kommunikation
Umgebung (Druckluft,

Stromzufuhr,...)

Prozess
Sicherheit (safety)

Komponenten (auch
intelligente Feldgeräte)

Logistik

Abbildung 15: Fehler die von der Steuerungssoftware behandelt werden

Die Fehler werden dabei durch die in Abbildung 16 genannten Mechanismen erkannt. Die
Überprüfung von Parametrierungen kommt insbesondere bei der Erkennung von Bedienerfeh-
ler zur Anwendung, also bei Schreib- und Lesevorgängen der Bedienerschnittstelle. Mit der
Überprüfung von Sensoren werden die meisten Fehlerursachen überwacht. Bei der Überprü-
fung von Verschränkungen wird beispielsweise überprüft, ob ein Zustand gültig sein kann (es
können z.B. nicht beide Endlagen eines Pneumatikzylinders gleichzeitig eingenommen wer-
den). Die Laufzeitüberwachung überprüft, ob ein Sensorsignal in einer bestimmten, durch An-
forderungen spezifizierte Zeitbeschränkungen, erreicht/ inaktiv wird. Gültige Intervalle werden
insbesondere bei Temperatur- oder Druckluftüberwachungen überprüft. Ein fehlendes Signal
ist für die Überprüfung von Safety-Funktionen wichtig, wie z.B. der Überwachung, ob die
Schutztüren geschlossen sind. Sammelfehler werden bei der Erkennung von zwei oder mehr
Fehlern zur gleichen Zeit gesetzt und geben meist detaillierteren Rückschluss auf eine mögli-
che Fehlerursache. Als eine Besonderheit bei der den Fehlererkennungsmechanismen wur-
den die Verriegelungsbedingungen identifiziert. Diese können nur begrenzt zu den Fehlerbe-
handlungsroutinen gezählt werden, da sie zur Fehlervermeidung eingesetzt werden. Dies
funktioniert, indem bei jeder möglichen Ausführung, also in jedem möglichen Kontrollflusspfad,
bestimmte Variablen überprüft werden. Als Beispiel ist die Überprüfung von Betriebsarten zu
nennen. Es wird in jedem Zyklus überprüft, welche Betriebsart aktiv ist, ansonsten sind ver-
schiedene Aktionen nicht erlaubt und werden nicht aufgerufen.

Die Fehlerkennungsmechanismen sind insbesondere für die Anforderung nach Tests relevan-
ter Fehlerszenarien zu beleuchten, da die Fehlerinjektion genau diese Fehlererkennungsme-
chanismen triggern muss.

2 Lösungsweg zur Erreichung des Forschungsziels

16

RB 3: Für den Test relevanter Fehlerszenarien müssen Fehler entsprechend der untersuchten
Fehlererkennungsmechanismen injiziert werden.

Da Verriegelungen in jedem Pfad überprüft werden, macht eine Fehlerinjektion in diesem Falle
jedoch wenig Sinn. An dieser Stelle ist vielmehr eine statische Codeanalyse angebracht, mit
welcher überprüft werden kann, ob die Verriegelungsbedingung tatsächlich in jedem Pfad ein-
gehalten wird.

Im Gegensatz dazu spiegeln die anderen Fehlererkennungsmechanismen bestimmte Szena-
rien wieder. Auf Basis von Code- bzw. Kontrollflussanalyse generierte Testfälle würden jedoch
jedes mögliche Szenario, welches zu einer Fehlererkennung führt, abbilden. Dies bestätigen
auch erste, in einem interdisziplinären Praktikum durchgeführte, Versuche. Die Komplexität
der Pfadanalyse ist sehr hoch und führte zu einer Generierung einer Unmenge von Testfällen,
die zum einen an einer Maschine kaum durchführbar sind und zum anderen keine realistischen
Szenarien wiederspiegeln. Eine anforderungsbasierte Testfallgenerierung auf Basis der Mo-
dellierung ist hier vom Kosten-Nutzen-Faktor deutlich vorzuziehen. Es wurden daher folgende
Randbedingungen formuliert.

RB 3.1: Zur Überprüfung von Verriegelungsbedingungen muss der Kontrollfluss untersucht
werden.

RB 3.2: Zur Überprüfung von Fehlerbehandlungen von bestimmten Szenarien (Prüfung Para-
metrierung, Prüfung (Sensoren), Überprüfung komplexes Signal und Sammelfehler) soll eine
anforderungs- bzw. modellbasierte Testfallgenerierung durchgeführt werden.

VerschränkungPrüfung (Sensoren)
Laufzeitüberwachung

Gültige Intervalle

Verriegelung

Prüfung Parametrierung

Überprüfung
komplexes Signal

Fehlendes Signal
SignalSammelfehler

Abbildung 16: Fehlererkennungsmechanismen

Die Untersuchung von Fehlerbehandlungen ergab weitere wichtige Rückschlüsse. In allen Bei-
spielen gibt es für die Behandlung von erkannten Fehlern keine lokale, individuelle Fehlerbe-
handlung. Die Fehler werden stattdessen nach Kritikalität eingestuft und entsprechend behan-
delt. Klassische Beispiele für Fehlerbehandlungsklassen sind Heimlaufstopp, Nothalt, etc. (Ab-
bildung 17). Neben der allgemeinen Fehlerbehandlung gibt es jedoch noch einen individuellen
Alarm und eine Markierung der betreffenden Produkte als Schlechtteil.

Als Randbedingungen wurden hier daher festgehalten:

RB 4: Tests zur Prüfung von Fehlerbehandlungen können aufgeteilt werden in:

• Fehlerindividueller Teil: Test der richtigen Fehlererkennung und Meldung

• Test der richtigen Fehlerbehandlung für verschiedene Fehlerbehandlungsklassen

Der Vorteil der aus dieser Randbedingung gezogen werden kann ist, dass der Aufwand zur
Testspezifikation deutlich reduziert werden kann. Die verschiedenen Fehlerbehandlungen
(Heimlaufstopp, Nothalt, etc.) können für die Tests einmal spezifiziert und für weitere Tests
stets wiederverwendet werden.

2 Lösungsweg zur Erreichung des Forschungsziels

17

Nothalt gesamte Anlage

Anhalten nach Taktzyklus

Anhalten der
Maschine

Nothalt Modul/ Station,
gesamte Anlage nach

Taktzyklus

Alarm/
Nachricht

...
Benutzer-

definiert, lokal

Markierung von
Produkten als
Schlechtteil

Abfangen/ Verriegelung

Maschinen
reaktion

Abbildung 17: Fehlerbehandlung

Auf Wunsch des Projektausschusses und bei genauer Analyse der Anwendungsbeispiele
kann es bei einer Fehlerinjektion von einigen Fehlern zu unsicheren bzw. undefinierten Zu-
ständen der Maschine kommen. Folglich wurde zusätzlich die Randbedingung 5 formuliert:

RB 5: eine Abbruchroutine muss vorgesehen werden, um undefinierte Zustände zu vermeiden.

Zusammenfassend konnten aus der Analyse der Anwendungsbeispiele folgende Randbedin-
gungen ermittelt werden:

2.1.3 Untersuchung von Codier- bzw. Ausführungsrichtlinien
Eine Diskussion mit dem Projektausschuss ergab, dass Verriegelungsbedingungen unterneh-
mensspezifisch in Codier- bzw. Ausführungsrichtlinien festgehalten werden. Es wurden Doku-
mente entsprechender Art von zwei Unternehmen untersucht. Da die Richtlinien weitere Re-
geln enthalten, für die sich eine Überprüfung an Kontrollflüssen anbietet, wurden auch diese
extrahiert.

Abstrahiert wurden folgende Ausführungsrichtlinien, die über die klassische Codeanalyse hin-
ausgehen extrahiert:

RB 1: Alle Anwendungsbeispiele enthalten Routinen für eine Grundstellungsfahrt/ Refe-
renzpunktfahrt/ Reset.

RB 2: manuelle Eingriffe durch den Operator während der Testausführung müssen spezi-
fizierbar sein.

RB 3: Für den Test relevanter Fehlerszenarien müssen Fehler entsprechend der unter-
suchten Fehlererkennungsmechanismen injiziert werden.

RB 3.1: Zur Überprüfung von Verriegelungsbedingungen muss der Kontrollfluss untersucht
werden.

RB 3.2: Zur Überprüfung von Fehlerbehandlungen von bestimmten Szenarien (Prüfung Pa-
rametrierung, Prüfung (Sensoren), Überprüfung komplexes Signal und Sammelfehler) soll
eine anforderungs- bzw. modellbasierte Testfallgenerierung durchgeführt werden.

RB 4: Tests zur Prüfung von Fehlerbehandlungen können aufgeteilt werden in:

• Fehlerindividueller Teil: Test der richtigen Fehlererkennung und Meldung

• Test der richtigen Fehlerbehandlung für verschiedene Fehlerbehandlungsklassen

RB 5: eine Abbruchroutine muss vorgesehen werden, um undefinierte Zustände zu vermei-
den

2 Lösungsweg zur Erreichung des Forschungsziels

18

1. Regel: Bei jeder Schrittweiterschaltung müssen entsprechende Statusvariablen (re-
turn values) aktualisiert werden (sonst Abbruch)

2. Regel: Nach jedem Start-Schritt muss es einen Warteschritt geben
3. Regel: Innerhalb von FBs dürfen keine globalen Variablen verwendet werden
4. Regel: Es darf nicht auf das Eingangsabbild zurückgeschrieben werden

Regel 1 und Regel 2 sind dadurch gekennzeichnet, dass die Schritte bestimmte Lese- oder
Schreibzugriffe auf bestimmte Variablen haben. Daher ist es möglich Kontrollflusspfade auf
bestimmte Abfolgen von Lese- und Schreibvorgängen von Variablen zu überprüfen.

Es wurde daher folgende zusätzliche Anforderung formuliert:

 Vorrecherche Stand der Forschung und Entwicklung
Im Folgenden werden zu dem Forschungsthema relevante aktuelle Veröffentlichungen bzw.
Ansätze vorgestellt und anhand von zentralen, aus dem Kontext des Antrages abgeleitete Kri-
terien miteinander verglichen. Als wesentliche Aspekte dieses Forschungsvorhabens können
die Fokussierung auf Steuerungssoftware, die statische Analyse von Steuerungscode, das
automatisierte Erstellen und Ausführen von Testfällen, sowie die besondere Berücksichtigung
von Fehlerbehandlungsroutinen angesehen werden. Tabelle 1 fasst diesen Vergleich ab-
schließend zusammen.

2.2.1 Statische Codeanalyse
Das Projekt [LD09] beschäftigt sich mit der testgetriebenen Automatisierung. Dabei wird ver-
sucht, potentielle Fehlerquellen in IEC 61131-3 Code mit Hilfe einer statischen Codeanalyse
aufzudecken. Zu einem ausgiebigen Softwaretest werden zusätzlich Funktionstests benötigt,
um das dynamische Verhalten zu überprüfen. Zur Formulierung der Testfälle wird ein schlüs-
selwortbasiertes Vorgehen vorgeschlagen. Die Testfallgenerierung erfolgt gemäß einer vorhe-
rigen Spezifikation in Excel-Tabellen. In diesem Ansatz werden keine Techniken der Fehlerin-
jektion angewendet.

In [FB05] wird ein Re-Engineering Ansatz für SPS Steuerungscode (IEC 61131-3) in einem
zweistufigen Prozess eingeführt. Dabei wird die Programmstruktur zuerst in ein UML-Modell
transformiert. Anschließend wird das Verhalten der Software (die verwendeten Algorithmen)
in einen endlichen Automaten umgewandelt. Dieser Formalisierungsschritt ermöglicht die An-
wendung weiterer Analyseverfahren, Verifikations- und/oder Simulationsläufe. Die Verwen-
dung im Kontext einer Testfallgenerierung wird jedoch nicht angestrebt.

Zur Analyse der Struktur, Qualität und Fehlerfreiheit von Software haben sich Ansätze zur
statischen Codeanalyse etabliert [EmNi08]. Im Gegensatz zu dynamischer Codeanalyse, die
eine Ausführung der Software erfordert, bestimmt statische Codeanalyse die Eigenschaften,
z.B. Softwarestrukturen oder mögliche Programmzustände [ArBi05], ohne Ausführung der
Software [EmNi08]. Mittels statischer Analyse können zudem Abweichungen von der ge-
wünschten Komplexität der Software oder auffällige Codefragmente identifiziert werden. Ob-
wohl bereits einige Werkzeuge zur statischen Codeanalyse existieren, z.B. Lint für C [Jo78]
und FindBugs für Java [AHM+08], wird IEC 61131-3 bisher nur von wenigen Anbietern unter-
stützt [APR+13]. CODESYS Static Analysis analysiert den Code anhand vordefinierter Regeln,
beispielsweise zur Überprüfung der Einhaltung von Namenskonventionen oder Identifikation
unerreichbarer Codebestandteile. Mittels itris PLC Checker können darüber hinaus Pro-
grammablaufpläne dargestellt, Komplexitätsmetriken analysiert und durch „Copy and Paste“
wiederverwendete Softwareeinheiten identifiziert werden. Es existiert jedoch bisher noch kein
Ansatz, der eine Spezifikation unternehmensspezifischer Kriterien für Ausführungsrichtlinien
erlaubt.

A9: Die Codeanalyseregeln sollen entsprechend der aus den Unternehmen analysierten
Regeln und den Verriegelungsbedingungen möglich sein

2 Lösungsweg zur Erreichung des Forschungsziels

19

2.2.2 Fehlerinjektion
Um die Zuverlässigkeit von Systemen zu validieren, hat sich die Fehlerinjektion (FI) als Me-
thode etabliert. Mit der Fehlerinjektion können die Mechanismen der Fehlerbehandlung und
Fehlererkennung überprüft werden. FI-Ansätze können in hardwareimplementierte FI (HWIFI),
softwareimplementierte FI (SWIFI) und modell- bzw. simulationsbasierte FI (MIFI) aufgeteilt
werden [SVE+10]. Während HWIFI und SWIFI meist bei Prototypen oder für Systemtests ver-
wendet werden, wird MIFI tendenziell eher in den frühen Phasen des Entwicklungsprozesses
angewendet, um frühzeitig Feedback, bezüglich der Funktion eines Systems, zu bekommen
[HTI97].

Die Testmethoden können auch durch die Arten von Fehlern, die injiziert werden, unterschie-
den werden. In einige Ansätzen werden bestimmte Klassen von Fehlern und die Reaktion
eines Systems auf diese Klassen überprüft. Bei diesen Ansätzen werden explizit Fehlermo-
delle, d.h. mögliche Störungen, die in manchen Ansätzen auch als Mutanten oder Saboteure
bezeichnet werden, spezifiziert. Das Fehlermodell definiert die Arten der möglichen Fehler ei-
nes Systems in Bezug auf verschiedene Kriterien wie die Phase der Erstellung (Design, Um-
setzung, etc.), die Dimension (Hardware-Fehler, Software-Fehler), die Systemgrenze (von in-
nerhalb oder außerhalb des Systems injizierte Fehler, etc.) oder die Persistenz (vorüberge-
hender oder permanenter Fehler) [ALR + 04]. Bei vielen Ansätzen wird außerdem der Aspekt
des Zeitverhaltens des Fehlers fokussiert, also das sporadische oder zufällige Auftreten eines
Fehlers im Gegensatz zu Fehlern zu definierten Zeitpunkten.

Die drei verschiedenen Ansätze - HWIFI, MIFI und SWIFI werden in den folgenden Abschnit-
ten näher betrachtet.

2.2.2.1 Hardwareimplementierte Fehlerinjektion (HWIFI)
Es existieren bereits zahlreiche Werkzeuge um integrierte Schaltkreise und insbesondere Mik-
roprozessoren mit HWIFI zu testen. Die Methoden sind daher insbesondere auf diese Art von
Systemen und dementsprechend auf Arten von Fehlern, die hier auftreten können, ausgerich-
tet. Beispiele sind elektromagnetische Störungen [ZAV04] und Störungen auf Pin-Level Stö-
rungen [HTI97]. Ein Überblick über verschiedene Tools und Methoden kann in [HTI97] und
[ZAV04] gefunden werden.

Für SPSen existieren zwar bereits Ansätze für Hardware-in-the-Loop-Prüfstände [SKV00], es
wurde jedoch noch keine besondere Aufmerksamkeit auf FI-Techniken in diesem Bereich ge-
legt. Geeignete Fehlermodelle und Studien in diesem Bereich sind daher nicht verfügbar.

2.2.2.2 Modellbasierte Fehlerinjektion (MIFI)
Bei MIFI kann unterschieden werden, ob die Fehler in Hardware- oder in die Softwaremodelle
injiziert werden. Hardwaremodelle existieren beispielsweise in der Elektrotechnik in Form der
„Very High Speed Integrated Circuit Hardware Description Language“ (VHDL) und wurde ins-
besondere für integrierte Schaltkreise entworfen. Dementsprechend werden diese Modelle für
die Fehlerinjektion und eine Simulation der Fehlerreaktion auf diese Fehler genutzt [BGG+05].

Im Automobilbereich gibt es weiterhin einige Ansätze für die modellbasierte Fehlerinjektion
[SVE+10]. In der Regel werden bei diesen Ansätzen vor allem bereits vorhandene MATLAB/
Simulink-Modelle für die Fehlerinjektion genutzt, welche ohnehin im Entwicklungsprozess ver-
wendet werden. In [SVE+10] wird darüber hinaus das Ergebnis der Testläufe für die Testfall-
generierung für Systemtests genutzt.

In der Produktionsautomatisierung wird in [KoVo11] ein Ansatz für die Fehlerinjektion in aus-
führbare UML-Zustandsdiagramm-Modelle vorgeschlagen. In dem Ansatz wird weiterhin vor-
geschlagen aus dem Programmcode alle möglichen Pfade, die zu einem Komponentenausfall
durch sogenanntes „program slicing“ führen, zu extrahieren, um volle Pfadabdeckung zu ge-
währleisten. Der Ansatz wurde jedoch nur auf konzeptioneller Ebene umgesetzt. Weiterhin
werden keine Fehlermodelle verwendet, sondern fehlerhafte Komponenten müssen manuell
im Modell ausgewählt werden.

2 Lösungsweg zur Erreichung des Forschungsziels

20

2.2.2.3 Softwareimplementierte Fehlerinjektion (SWIFI)
Ebenso wie für MIFI und für HWIFI sind bereits Werkzeuge für die SWIFI in integrierten Schalt-
kreise vorhanden [CMS98]. Der Vorteil der SWIFI ist, dass sie garantiert zerstörungsfrei und
reproduzierbar ist. In [PAC+12] wird ein Ansatz für die Validierung spezifizierter Safety-Funk-
tionen vorgeschlagen. Die Vorgehensweise unterstützt die Überprüfung nach der Einhaltung
dieser Safety-Funktionen unter jeder Bedingung. Fehlermodelle oder die Schaffung einer an-
wenderfreundlichen Notation sind nicht im Fokus der Arbeit.

Neben der FI bei der Co-Simulation wird in [SlVu05] auch die Einbringung von definierten
Fehlern bei der Codegenerierung vorgeschlagen. Dieser Fehler tritt während der Ausführung
auf. Ein ähnlicher Ansatz wird in [VBR+07] unter der Nutzung von SCADE-Modellen vorge-
schlagen.

2.2.3 Testen in der Automatisierungstechnik
Im Maschinen- und Anlagenbau bzw. in der Produktionsautomatisierung ist das manuelle Tes-
ten immer noch dominierend. Seit einigen Jahren wird der Bedarf nach automatisierten Tests
in dieser Domäne jedoch wahrgenommen und erste Ansätze bzw. Werkzeuge für die automa-
tisierte Durchführung von Tests erscheinen auf dem Markt [Testmanager].

Auch in der Forschung existieren bereits einige Ansätze für die automatisierte Testdurchfüh-
rung.

In [EKF+09] wird auf der Grundlage von IEC 61499 ein Grey-Box-Testverfahren erläutert. Bei
dieser vorgeschlagenen testgetriebenen Entwicklung werden die Testdaten, bestehend aus
Eingangs- und Ausgangsdaten, dem auslösenden Ereignis und dem erwarteten Ergebnis vom
Steuerungsprogrammierer spezifiziert. Dieser Ansatz auf Unit-Testebene bedarf der manuel-
len Beschreibung des Testfalls durch den Entwickler und verwendet keine Automatisierung
bei der Erstellung. Die Regressionstests werden jedoch automatisiert. Durch die fest vorgege-
benen Testfälle erfolgt keine Fehlerinjektion zur Laufzeit, die ein mögliches Maschinenfehlver-
halten darstellen könnte.

In [SEK+09] wird die automatische Ausführung von Tests für Steuerungsprogramme unter-
sucht. Eine Funktionsspezifikation dient zur Erzeugung der Testabläufe auf einem Prüfstand,
der hardwaregebunden mit der SPS gekoppelt ist. Dabei werden keine Fehler direkt injiziert,
sondern der spezifizierte Funktionsumfang (also die Gutfälle) abgeprüft.

In dem Ansatz nach [StEr08] wird die Übertragbarkeit von Testkonzepten aus der Anwen-
dungsentwicklung auf SPS-Steuerungssoftware überprüft. Dabei steht die automatische Aus-
führung von Modultests in Form von daily builds im Vordergrund. Eine wesentliche Kernaus-
sage ist: „Leider unterstützen die meisten Toolhersteller im SPS-Umfeld die wesentlichen As-
pekte einer modernen Softwareentwicklung nur unzureichend“ [StEr08].

In [OM09] sollen möglichst viele verschiedene Testfälle zur Überprüfung des korrekten Ver-
haltens einer SPS-Steuerungssoftware generiert und ausgeführt werden. Außerdem soll ein
Verfahren für die intuitive Testfallspezifikation entwickelt werden. Es werden jedoch keine Me-
chanismen zur Fehlerinjektion in der Skizze genannt.

Das Forschungsprojekt „Virtueller Funktionstest für eingebettete Systeme (ViFES)“ fokussiert
auf die auch in diesem Projekt angestrebte Vorverlagerung der Abnahmetestfälle in frühere
Entwicklungsphasen und deren Wiederverwendung durch den Einsatz von Testautomaten für
Regressionstests [Ru07].

Diese Lösungsansätze sind ein erster Schritt in die richtige Richtung. Der hohe Aufwand der
Testerstellung ist damit jedoch noch nicht gelöst, um Tester adäquat zu unterstützen. In der
Forschung wird daher intensiv an der Fragestellung der Generierung von Testfällen aus semi-
formalen Modellen durch die Weiterentwicklung und Formalisierung verschiedener Notationen
gearbeitet.

2 Lösungsweg zur Erreichung des Forschungsziels

21

In [Ot08] wird ein Testverfahren für Funktionsbausteine für funktional sichere Anwendungen
vorgestellt. Dabei werden die auszuführenden Testfälle aus einem Status-Diagramm erzeugt,
das als Funktionsbaustein-Spezifikation vorausgesetzt wird. Das Ergebnis des ausgeführten
Testfalls wird anhand eines Ein-/Ausgabevergleichs in das Test-Logbuch eingetragen. Es wer-
den Parameter aufgrund einer Risikoanalyse für Testfälle ausgewählt, jedoch werden keine
Fehler direkt injiziert. Der dafür notwendige White-Box Test wird lediglich zur statischen Code-
analyse verwendet.

Die Unified Modeling Language (UML) ist eine der weitverbreitetsten Notation um die Struktur
und das Verhalten von Software zu modellieren, daher ist es nicht verwunderlich, dass einige
Forschungsansätze diese Sprache als Grundlage zur Testfallgenerierung nutzen.

In [KHC+99] werden Unit-Tests aus UML-Zustandsdiagrammen erzeugt. Die Transformation
aus diesen Diagrammen heraus in erweiterte, endliche Zustandsautomaten kann sowohl kon-
trollfluss- als auch datenflussorientiert sein. Bei der Testdurchführung wird somit überprüft, ob
sich das System-Under-Test (SUT) gemäß der Spezifikation (UML Zustandsdiagramm) ver-
hält. Eine Berücksichtigung von Fehlersituationen ist bei diesem Ansatz nicht gegeben.

In [HWÖ+10] und [HuFr06] werden geeignete Diagramme der UML für die Testfallgenerierung
untersucht, insbesondere mit dem Ziel Testfälle für die nach IEC 61499 implementierten Steu-
erungssoftware zu generieren. Dabei werden Interaktionsdiagramme für die Extraktion von
Testsequenzen vorgeschlagen. [HKV+11] setzt eine solche Testfallgenerierung aus Zu-
standsdiagrammen mit Anwendung eines Algorithmus einer Extraktion aller Pfade um.

[KHD08] schlägt ebenso einen Ansatz zur automatischen Testfallgenerierung aus UML-Zu-
standsdiagrammen vor, indem diese zunächst in ein formales Petrinetzmodell übersetzt wer-
den. Daraufhin können die Testfälle durch das Auffalten der Petrinetze generiert werden.

In [KCB11] wird die Testfallgenerierung aus UML-Zustandsdiagrammen über den Standard
der Testing and Control Notation (TTCN-3) umgesetzt. Die Evaluation wird an einem Kommu-
nikationsprotokoll gezeigt.

Die Ausführbarkeit durch Anpassung und Formalisierung von Sequenzdiagrammen wird in
[KTV12] fokussiert. Dabei entstehen Sequenzdiagramm, die direkt als Testfälle in der CODE-
SYS Programmierumgebung ausführbar sind.

Tabelle 1: Vergleich und Bewertung der existierenden Ansätze

 Referenz Stati-
sche
Code-
analyse

Fokussie-
rung auf
Fehlerbe-
handlung

Automati-
sche Gene-
rierung von
Testfällen

Automatisierte
Ausführung
von Testfällen

Fokussie-
rung auf
Steuerungs-
software

 [LD09] + - - + +
 [FB05] + - - - +
 [Jo78] + - - - -
 [AHM+08] + - - - -
 [CODESYS] + - - - +
 [itris PLC

Checker] + - - - +

 [ZAV04] - + - + -
 [HTI97] - + - + -
 [SKV00] - - - + +
 [BGG+05] - + - + -
 [SVE+10] - + + + -

2 Lösungsweg zur Erreichung des Forschungsziels

22

 [KoVo11] - + - + +
 [CMS98] - + - + -
 [PAC+12] - + - + -
 [SlVu05] - + + + -
 [VBR+07] - + + + -
 [Testmana-

ger] - - - + +

 [EKF+09] o - - o +

Veröffentlichun-
gen, Werkzeuge

und Projekte

[SEK+09] - - o o +

[StEr08] - - - o +

[OM09] - - + o +

[Ru07] o - o + o

[Ot08] o - + + o

[KHC+99] - - + - o
[HWO+10][

HuFr06] - - + - +

[HKV+11] - - + - +

[KHD08]

[KCB11] - - + - +

[KTV12] - - - + +
 Legende: + Merkmal erfüllt, - Merkmal nicht erfüllt, o Merkmal teilweise erfüllt

Wie in Tabelle 1 gezeigt, erfüllt keiner der existierenden Ansätze und Werkzeuge die Anforde-
rungen an eine automatisierte Lösung für den Test von Fehlerbehandlungsroutinen im Bereich
der Steuerungssoftware. Auf den Mangel solcher Lösungen wird zum Teil auch in [StEr08]
eingegangen. Es wird insbesondere deutlich, dass es nur vereinzelt (im Automotive-Bereich)
zum Test von Fehlerbehandlungsroutinen kommt, obwohl diese den Großteil der Gesamtsoft-
ware ausmachen. Der Stand der Forschung und Entwicklung zeigt klar den Handlungsbedarf
und somit die Notwendigkeit einer Lösung.

 Verfahren zur statischen Codeanalyse
Neben dem Test von Fehlerbehandlungsroutinen wurde aus der Zielstellung und den im Pro-
jekt ermittelten Randbedingungen die Notwendigkeit abgeleitet, dass die Steuerungs-Software
auf die Einhaltung von Ausführungsrichtlinien überprüft werden muss. Als umzusetzende Aus-
führungsrichtlinien wurden anhand der in der Ist-Analyse gegeben Anforderung A9 gemeinsam
mit den Industriepartnern des Projekts ein grundsätzliches Regelwerk entworfen, dass sich
prinzipiell auf die IEC 61131-3 Programmiersprachen anwenden lässt:

1. Regel: Bei jeder Schrittweiterschaltung müssen entsprechende Statusvariablen (re-
turn values) aktualisiert werden (sonst Abbruch)

2. Regel: Nach jedem Start-Schritt muss es einen Warteschritt geben

3. Regel: Innerhalb von FBs dürfen keine globalen Variablen verwendet werden

4. Regel: Es darf nicht auf das Eingangsabbild zurückgeschrieben werden

Die Regeln müssen wie auch die Verriegelungsbedingungen bei jeder Ausführung, also in
jedem möglichen Kontrollflusspfad, eingehalten werden. Um die Regeln an einem Code-Mo-
dell automatisch überprüfen zu können, müssen sie in einer formalisierten Art vorliegen.

2 Lösungsweg zur Erreichung des Forschungsziels

23

Da ST die in den Anwendungsbeispielen am häufigsten verwendete Sprache ist wurde zu-
nächst ein Konzept für die Extraktion eines Kontrollflussgraphen und einer Analyse desselben
entwickelt. Das Vorgehen für die Codeanalyse ist in Abbildung 18 dargestellt. Zunächst wird
der Code aus einem PLCopen XML Dokument extrahiert und über einen abstrakten Syntax-
baum (AST) in einen Kontrollflussgraphen (CFG) extrahiert. Nachdem eine Regel entspre-
chend der oben genannten Beispiele in formalisierter Form angegeben wurde, kann der Kon-
trollflussgraph schließlich auf die Einhaltung der Regel überprüft werden.

Abbildung 18: Grundsätzliche Vorgehensweise bei der statischen Codeanalyse von
ST-Code

Abbildung 18 zeigt die verschiedenen Darstellungsmöglichkeiten für den Code. Neben der
Darstellung als Kontrollfluss, unterstützt die ZuMaTra-Codeanalyse auch die Darstellung von
sogenannten intraprozedualen Kontrollflüssen, bei denen Aufrufe anderer Funktionen und
Funktionsbausteine „aufgeklappt“ werden können. Die Aufrufhierarchie kann dementspre-
chend ebenfalls auf die Einhaltung der Richtlinien überprüft werden.

ST Code Codemodell
Kontrollflussgraph (AST, CFG)

Formalisierte
Regel

(
[W | R | WR]
#VariableName;)
* (IFCOND#
(boolean
Expression);
)*

Codeanalyse
Engine

Ergebnis
Manuelle
Spezifikation einer
Regel mithilfe des
Templates

Wird die spezifizierte Regel in
allen Abläufen eingehalten?

PLCOpen XML

Extraktion des Codes,
Überführung ins
Codemodell

2 Lösungsweg zur Erreichung des Forschungsziels

24

Abbildung 19: Verschiedene Darstellungsweisen des Codes

Regel 1 und Regel 2 sind dadurch gekennzeichnet, dass die Schritte bestimmte Lese- oder
Schreibzugriffe auf bestimmte Variablen haben. Daher ist es möglich Kontrollflusspfade auf
bestimmte Abfolgen von Lese- und Schreibvorgängen von Variablen zu überprüfen.

Um die Regeln formalisiert spezifizieren zu können, wurde ein einfaches Template, angelehnt
an ST, entwickelt. Dies ermöglicht den Anwendern, die mit der IEC 61131-3 vertraut sind,
einen einfachen Einstieg und schnelles Verständnis für die Spezifikation.

 Target: Modell, das untersucht werden soll (CFG oder iCFG)

 Paths: Bedingungen, nach denen die zu testenden Pfade ausgewählt werden:

o ALL; – es werden alle möglichen Pfade betrachtet.

o [W | R | WR]#VariableName; – Auswahl Pfade, entlang denen die bei der
Variable „VariableName“ ein [schreibender | lesender | schreibender oder le-
sender] Zugriff erfolgt.

o IFCOND#(booleanExpression); – Pfade, welche über einen Verzweigungskno-
ten (IF) verlaufen, der die Bedingung „booleanExpression“ hat. „booleanEx-
pression“ ist ein boolescher Ausdruck nach IEC 61131-3 Syntax.

 PathCondition: Bedingung die überprüft werden soll (gleiche Spezifikation wie bei Pa-
ths)

 Beispielregel: „In allen Pfaden eines Kontrollflusses in denen ein Schreibzugriff auf
VariableX stattfindet soll überprüft werden ob VariableX<5 ist.“

CFG

POU Node

Source Code AST

Intraprozeduraler CFG

2 Lösungsweg zur Erreichung des Forschungsziels

25

 Target: CFG;
 Path: W#VariableX;
 PathCondition: IFCOND#(VaribaleX<5);

Alle Pfade des Kontrollflusses werden entsprechend den spezifizierten Regeln untersucht.

 Vorgehensweise für den Test von Fehlerbehandlungsroutinen

Abbildung 20: ZuMaTra-Vorgehensweise

Die Vorgehensweise zum Test von Fehlerbehandlungsroutinen von Maschinen und Anlagen
umfasst 4 Schritte. Zunächst wird die Maschine in Funktionseinheiten aufgeteilt (Experten-
Know-How, keine zusätzliche Unterstützung durch ZuMaTra). Für jede Funktionseinheit wird
anschließend das Verhalten modelliert, aus welchem die Testfälle generiert werden. Damit die
Testfälle möglichst automatisiert durchgeführt werden können, muss anschließend eine Ta-
belle vervollständigt werden, in welcher die Angaben zur Ausführung der Testfälle ergänzt
werden müssen. Darüber hinaus können die Testfälle nach Kritikalität priorisiert werden. Auf
Basis der Tabelle werden die Testfälle generiert und können mit PLCopen XML in die Pro-
grammierumgebung zur Ausführung importiert werden.

Die Testfälle werden auf Basis des modellierten Verhaltens generiert und berücksichtigen Zu-
sammenhänge zwischen den verschiedenen modellierten Komponenten in einem Diagramm.
Die Aufteilung der Einheiten sollte sich daher möglichst an dem Verhalten der Maschine ori-
entieren. Für die Übersichtlichkeit sollte darauf geachtet werden, dass die Einheiten nicht zu
groß gewählt werden, da sonst die Übersichtlichkeit bei der Modellierung verloren geht.

Für die Anwendung der Vorgehensweise sei insbesondere auf den Leitfaden verwiesen (siehe
Anhang CD: FMEA Leitfaden).

2 Lösungsweg zur Erreichung des Forschungsziels

26

2.4.1 Modellierungsverfahren für Komponenten (Abbildung 20, Nr. 1)

2.4.1.1 Modellierung im Weg-Zeit-Diagramm
Das Verhalten der Maschine wird bei der ZuMaTra-Vorgehensweise mit Weg-Zeit-Diagram-
men modelliert. Dabei fokussiert werden die Sensorvariablen, welche den Zustand der Ma-
schine abbilden.

Das Weg-Zeit-Diagramm ist nach der UML 2.0 ein Interaktionsdiagramm. Das Diagramm wird
durch „Lifelines“, welche bestimmte Objekte repräsentieren und deren Zustandsinvarianten
(„State Invariants“), welche einen bestimmten Zustand der „Lifeline“ repräsentieren, struktu-
riert. Das Verhalten wird durch die Änderung der Zustände über die horizontale Zeit-Achse
modelliert. Weitere Elemente wie Nachrichten („Messages“) und Zeitintervalle („Duration In-
terval“) bieten die Möglichkeit einer Modellierung von Interaktionen zwischen den „Lifelines“
und von Zeitabschnitten.

Abbildung 21: Das Weg-Zeit-Diagramm mit den Modellierungselementen

Das Weg-Zeit-Diagramm wurde im Rahmen des Projekt durch Profilierung angepasst (siehe
Anhang Abbildung 38). Bei ZuMaTra ist das Weg-Zeit-Diagramm die Abbildung des Gutver-
haltens einer Maschine und bildet die Grundlage für die Testfallgenerierung. Ein Beispiel ist in
Abbildung 21 dargestellt. Die einzelnen Elemente werden in Tabelle 2 näher beschrieben. Bei
der Definition der „StateInvariants“ (siehe Abbildung 21 und Tabelle 2) wurde auf die Einhal-
tung der Anforderung A3 geachtet. Durch die Definition einer „StateInvariant“ nach Wert, kön-
nen beliebig viele bzw. wenige Invarianten für eine Sensorvariable definiert werden.

Tabelle 2: Elemente des Weg-Zeit-Diagrammes zur Beschreibung des Gut-Verhaltens.

Element Notation Beschreibung

«SensorValue

Lifeline» Lifeline

<N
am

e>
 :

<T
yp

>

<Name>: Komponente, die abgebildet wird.

Beschreibung: Kann beliebig gewählt werden
und dient der Aufteilung in sinnvolle Einheiten.
Eine Lifeline kann einen oder mehrere Sensoren
abbilden.

2 Lösungsweg zur Erreichung des Forschungsziels

27

«sensorValue» State
Invariant

<VisibleName>

<VisibleName>

<Variable>: Bezeichner der Sensorvariable

<VisibleName>: Sichtbarer Name für ein bes-
seres Verständnis und größere Übersichtlichkeit

<Value>: Konkreter Wert, den der Sensor auf
diesem State Invariant annimmt.

Für einen don’t care Zustand kann „ * “ eingefügt
werden.

Timeline-Points „ “ unterstützen die Modellie-
rung des Verhaltens und markieren einen Zu-
standswechsel bzw. Beginn und Ende wichtiger
Abschnitte.

«ControlValue

Lifeline» Lifeline

<Name>

<Name>: Konkreter Bezeichner

Beschreibung: Modellierung von weiteren be-
liebigen Variablen, die nicht das konkrete Ver-
halten der Funktionseinheit abbilden, sondern
auf das Verhalten Einfluss nehmen. Z.B. Be-
triebsart oder andere HMI-Variablen.

Duration Interval

Beschreibung: Zeitintervall zwischen zwei ver-
schiedenen Punkten bzw. Zuständen und Zu-
standswechseln.

Interval

Constraint

Beschreibung: Intervall bzw. Toleranz für ei-
nen bestimmten Sensorwert (State Invariant) für
den modellierten Zeitraum zwischen zwei Punk-
ten (einem Zustand).

Es können auch Variablen verwendet werden,
auf welche von dem Testfall zugegriffen wird.

Bsp.: {Stamp.MinValue .. Stamp.MaxValue}

«And»

Message

Beschreibung: Message, um die Abhängigkeit
zweier Zustandswechsel zu modellieren.

{0 .. 1s}

{1 .. 2}

&

2 Lösungsweg zur Erreichung des Forschungsziels

28

«IECMessage»

Message

(asynchSignal)

<Value>: Wert zum Zeitpunkt, an dem die Mes-
sage gesendet wird.

Diese Arten von Messages werden von einer
ControlValue gesendet. Die Variable wird als
Vorbedingung für die folgenden Zustandswech-
sel miteinbezogen.

2.4.2 Automatische Testfallgenerierung (Abbildung 20, Nr. 2)
Die Testfälle zum Test von Fehlerbehandlungsroutinen simulieren stets eine Abweichung des
Gutverhaltens. Eine Abweichung vom Gutverhalten kann mehrere Formen annehmen, welche
im folgendem im Detail aufgelistet werden. Die Fehleroperatoren entsprechen dabei genau
den nach Randbedingung RB 3.2 definierten Fehlererkennungsmechanismen und erfüllen da-
mit Anforderung A6.

Die Fehleroperatoren werden automatisch auf das Weg-Zeit-Diagramm angewandt, wenn die
Voraussetzungen für ihre Anwendung vom Modell gegeben sind, womit Anforderung A4 und
A7 erfüllt werden. Durch die automatische Generierung wird auch der erste Teil der Anforde-
rung A1 einer weitgehend automatischen Testfallerstellung erfüllt.

Tabelle 3: Fehleroperatoren für die Testfallgenerierung.

Element Notation Beschreibung

Zufälliger Zu-
standswechsel

Es wird keine Zustandsänderung erwartet, es taucht
jedoch eine auf.

Regeln für die Modellierung:

Ein konstanter Abschnitt auf der Lifeline ist gegeben.

Anpassungsmöglichkeiten:

In der Testtabelle kann der Zeitpunkt der Fehlerinjek-
tion durch Veränderung der Precondition (Location)
konkret bestimmt werden.

Fehlender Zu-
standswechsel 1
(StateChange
Block)

Nach Zustand x0 wird Zustand x1 innerhalb des spe-
zifizierten Zeitintervalls erwartet. Das Signal des Sen-
sors kommt jedoch nicht. Der Testfall überschreibt das
Sensorsignal.

Regeln für die Modellierung:

Definierter Zustand (mit Zeit) x0, von dem aus das
Zeitintervall startet und beim zweiten Zustand x1 mit
Angabe einer maximalen Zeit endet.

True

{0 .. 1s}

x0 x1

2 Lösungsweg zur Erreichung des Forschungsziels

29

Fehlender Zu-
standswechsel 2
(StateChange
BlockConstant)

Nach Zustand x0 wird Zustand x1 innerhalb des spe-
zifizierten Zeitintervalls erwartet. Der Zustand hält je-
doch länger als erwartet.

Regeln für die Modellierung:

Definierter Zustand (mit Angabe der maximalen Zeit),
von dem aus das Zeitintervall startet und bei zweitem
Zustand x1 nach einer maximalen Dauer endet.

Zu früher Zu-
standswechsel 1
(StateChange
Force)

Für einen Zustandswechsel von x0 nach Zustand x1
wird eine bestimmte Mindestzeit erwartet, der Wech-
sel geht aber schneller als gedacht.

Regeln für die Modellierung:

Definierter Zustand (Zeit), von dem aus das Zeitinter-
vall mit der Angabe einer Mindestzeit > 0 startet und
bei zweitem Zustand x1 endet.

Zu früher Zu-
standswechsel 2
(StateChange
ForceConst)

Die Dauer des Zustands x0 wird für eine bestimmte
Zeit erwartet, bricht jedoch früher ab als erwartet.

Regeln für die Modellierung:

Definierter Zustand x0 (Zeit), von dem aus das Zeitin-
tervall startet und eine minimale Dauer angegeben ist.

Verletzung eines
gültigen Intervalls

Für einen Sensorzustand wird ein gültiges Intervall an-
gegeben, dieses wird jedoch über- oder unterschrit-
ten.

Regeln für die Modellierung:

Angabe eines IntervalConstraint.

Bei Zustands-
wechsel erfolgt
kein synchroner
Zustandswechsel
auf spezifizierter
Lifeline.

Bei einem Sensorsignal wird zwingend ein anderes
Sensorsignal erwartet.

Regeln für die Modellierung:

Verknüpfung des abhängigen Signals mit eine Mes-
sage mit „&“.

Ein Zustand auf ei-
ner Lifeline zu ei-
nem bestimmten
Zeitpunkt ent-
spricht nicht dem
erwarteten Zu-
stand.

Bei einem Zustand wird in jedem Fall ein anderer Zu-
stand erwartet.

Regeln für die Modellierung:

Modellierung einer „&“-Message.

{0 .. 1s}

x0 x1

{0,5 .. 1s}

x0 x1

{1,9.. 2s}

x0 x1

{1 .. 2}

&

&

2 Lösungsweg zur Erreichung des Forschungsziels

30

Sammelfehler:

Kein Zustands-
wechsel
nach einem Zeitin-
tervall auf zwei
Lifelines

Nach einem Zeitintervall werden synchron zwei Zu-
standswechsel erwartet, diese kommen aber nicht.

Regeln für die Modellierung:

Modellierung eines Zeitintervalls mit einem Zustands-
wechsel und einer „&“-Message.

Legende: Gutverhalten, Injizierter Fehler, Geblocktes Signal

Der Anwender hat die Möglichkeit die Fehleroperatoren, welche auf das Weg-Zeit-Diagramm
angewandt werden sollen, auszuwählen. Nach der Auswahl wird eine Testtabelle, bei der jede
Zeile für einen Testfall steht, generiert. Der Aufbau der Tabelle des automatisch generierten
Teils (Tabelle 3) ist wie folgt:

 Die Vorbedingung (Precondition) gibt den Zustand an, bei der die Vorbedingung für
den Testfall als erfüllt gilt. Die Locations lassen sich direkt im Weg-Zeit-Diagramm zu-
rückverfolgen und sind dort dargestellt.

 Die Spalte Lifeline gibt an, welche „Lifeline“ im Zentrum des Tests steht.

 Die Spalte FI Code zeigt an, welche Sensorvariable wie überschrieben wird.

 In der Spalte FI Injection Time wird angegeben, wann die Fehlerinjektion stattfindet.
Bei „StateChangeBlock“ ist dies beispielsweise standardmäßig der Zeitpunkt, bei dem
das Gutverhalten des Sensors detektiert wird (Bsp. „Stamp Filled“ wird erwartet, kommt
im Ablauf auch entsprechend, wird aber geblockt). Bei Angabe einer Zahl ist die Zeit
ab Erreichen der Vorbedingung gemeint.

 Der Time Constraint gibt an, wie lange die Reaktion dauern darf (Differenz zur „FI In-
jection Time“).

&

2 Lösungsweg zur Erreichung des Forschungsziels

31

Abbildung 22: Testtabelle zur Vervollständigung der Testfälle

In der Testtabelle müssen außerdem die Informationen, die nach den Randbedingungen RB
1, RB 2 und RB 4 definierten notwendigen Operationen für die Testdurchführung ergänzt wer-
den. Dies sind die Init-, EvaluateReaction- und Abort-Funktionen. Dies erfolgt durch Codeab-
schnitte, die im Editor definiert und in der Testtabelle referenziert werden können.

Hierfür sind folgende Spalten in der Testtabelle vorgesehen:

 Init: Referenz auf eine vordefinierte Funktion. Falls eine mehrzyklische Ausführung not-
wendig ist, soll in dem Codeschnipsel die Variable OK für die Ausführungskontrolle
verwendet werden. Solange „OK = FALSE“, wird das Codeschnipsel aufgerufen. Die
Testfallausführung wird pausiert und erst dann fortgesetzt, wenn „OK = TRUE“ wird.
Namens-Konflikte mit der Variable OK sind ausgeschlossen. D
Bsp.: TestInit(); OK:= TestInit.xDone;

 Abort: Referenz auf eine vordefinierte Funktion. Falls eine mehrzyklische Ausführung
notwendig ist, soll die Variable OK für die Ausführungskontrolle in dem Codeschnipsel
verwendet werden. Solange „OK = FALSE“, wird das Codeschnipsel aufgerufen. Die
Testfallausführung wird pausiert und erst dann fortgesetzt, wenn „OK = TRUE“ wird.
Namenskonflikte mit der Variable OK sind ausgeschlossen. s
Bsp.: TestResetSemiAuto(); OK:= TestResetSemiAuto.xDone;

 Expected Reaction: Referenz auf eine vordefinierte Funktion. In dem Codeschnipsel
sollen die Variablen PASS und/oder FAIL verwendet werden. Das Codeschnipsel wird
während der Fehlerinjektion ausgeführt. Das Ausführungsergebnis ist PASS/FAIL oder
noch kein PASS oder FAIL (bei dieser Ausführung wurde nicht PASS oder FAIL ge-
setzt). Bsp.: StopStamp(); PASS:= Stopped;

2 Lösungsweg zur Erreichung des Forschungsziels

32

o PASS - beobachtete Reaktion entspricht der erwarteten (durch das Code-
schnipsel spezifizierten) Reaktion.

o FAIL - beobachtete Reaktion entspricht der erwarteten (durch das Codeschnip-
sel spezifizierten) Reaktion nicht.

 Expected Alarm: Hier wird eine Boolean Expression erwartet. Wird kein besonderer
Alarm bei einem bestimmten Testfall erwartet, kann hier auch TRUE angegeben wer-
den.

 Application: Dies ist das Programm, welches getestet werden soll. Das Programm
muss in jedem Fall angegeben werden.

 Priority: Durch -1 werden Testfälle deaktiviert. Alle anderen Testfälle werden aufstei-
gend, beginnend mit der 0, abgearbeitet. Dies gibt dem Anwender die Möglichkeit, die
Testfälle zu priorisieren.

2.4.2.1 Risikobasierte Testfallselektion
Da die Spezifikation nach der Anforderungsanalyse und Anforderung A8 als optionales Ele-
ment in der ZuMaTra-Vorgehensweise enthalten ist, wurde ein Leitfaden für die Einstufung der
Risikopriorität von Fehlern, welche von der Steuerungssoftware behandelt werden müssen,
entworfen (siehe Anhang CD: FMEA Leitfaden). Die Einstufung erfolgt hierbei in Form einer
Prozess-Failure Mode and Effects Analysis.

Der Aufbau orientiert sich hierbei an der VDA 4.2 „Sicherung der Qualität vor Serieneinsatz
System FMEA“ nach Bertsche [VDA4.2]. Ein Beispiel für eine derartige FMEA ist in Abbildung
23 dargestellt und wird im Leitfaden ausführlicher erläutert.

Wurde eine FMEA durchgeführt, kann die Priorität der Testfälle systematisch festgelegt wer-
den, indem in der Testtabelle das Feld Priority verändert wird. Bei einer hohen Risikoprioritäts-
zahl (wie in der Abbildung 23 z.B. 90), wird eine hohe Priorität angegeben (z.B. 1). Die Testfälle
werden bei der Abarbeitung nach Priorität geordnet (von 1 aufsteigend).

2 Lösungsweg zur Erreichung des Forschungsziels

33

Abbildung 23: Beispiel für eine FMEA (ausführlichere Beschreibung siehe Anhang CD:
FMEA Leitfaden)

2.4.3 Automatisches Echtzeit-Testfallausführungsverfahren (Abbildung 20, Nr. 3)
Neben dem tatsächlichen Testobjekt, dem sogenannten „System Under Test“ (SUT), werden
zwei weitere Testkomponenten (TestComponent) für die Testdurchführung benötigt. Dies ist
zum einen das Testsystem und zum anderen die Komponente, gegen die getestet wird.

Die Testfälle für den Test von Fehlerbehandlungen durch Fehlerinjektionen haben den folgen-
den Aufbau:

 TestComponent – Testsystem mit Testbausteinen: Das Testsystem setzt sich durch
den CODESYS Test Manager und den generierten Testcode aus dem AIS-Editor zu-
sammen. Der Test Manager generiert zusätzlich Code für die Ausführung und das Log-
ging der Testfälle, der Testcode wird anwendungsspezifisch erstellt, liegt als POU im
Projekt vor und injiziert den tatsächlichen Fehler.

 SUT – Steuerungscode: Für den Test der Applikation werden einige Funktionen dieser
genutzt und es werden vordefinierte Variablen erwartet, die beobachtet und geloggt
werden. Zum einen sind dies Funktionen wie die Grundstellungsfahrt oder Abbruch-
routinen und zum anderen die Beobachtung der Fehlerreaktionen.

 TestComponent – Reale HW, Maschine: Falls eine Simulation der Maschinen vorhan-
den ist, kann diese genutzt werden, ansonsten ist eine Ausführung der Testfälle an der
realen Hardware mit dem Test Manager möglich.

In Abbildung 24 werden zunächst die Prepare-Funktionen durch den CODESYS Testma-
nager durchgeführt. Die Prepare-Funktionen werden im Testmanager konfiguriert und füh-
ren Aktionen wie die Generierung des Codes, der für die Ausführung der Testfälle und die
Dokumentation dieser notwendig ist, durch.

2 Lösungsweg zur Erreichung des Forschungsziels

34

Da für die Ausführung der Fehlerinjektion ein definierter Zustand gegeben sein soll, wird
zu Beginn eine Initialisierung durchgeführt. Hier soll eine Unterscheidung zwischen auto-
matischer und semi-automatischer Initialisierung gemacht werden. Bei der automatischen
Initialisierung wird davon ausgegangen, dass das Programm bei Start einen Initialisie-
rungsvorgang durchführt. Bei der semi-automatischen Initialisierung wird eine Freigabe
durch den Operator erwartet. So hat dieser ggf. Zeit Maßnahmen für die korrekte Initiali-
sierung bzw. Grundstellungsfahrt zu ergreifen. Wurde die Initialisierung abgeschlossen,
wird das Programm durchlaufen, bis die Vorbedingung für die Fehlerinjektion gegeben ist.
Sobald diese erkannt wird, wird der Fehler injiziert und der weitere Ablauf beobachtet. Wird
die korrekte Fehlermeldung und die korrekte Fehlerbehandlung eingeleitet, wird der Test-
fall mit dem Ergebnis „erfolgreich“ beendet. Überschreitet die erwartete Zeit einen Wert,
wird der Testfall abgebrochen. Hierfür wird eine Abbruchroutine benötigt, die von dem An-
wender definiert wird. Auch hier soll die Möglichkeit gegeben werden, eine automatische
oder eine semi-automatische Abbruchroutine zu starten. Bei der Automatischen wird ledig-
lich eine Methode oder Variable aus dem Programm getriggert, bei der semi-automati-
schen Ausführung wird eine Bestätigung erwartet. In Abbildung 24 ist ein semi-automati-
scher Testfall dargestellt.

Abbildung 24: Aufbau der Testfälle (links) und semi-automatische Ausführung der
Testfälle (rechts).

2.4.3.1 Dokumentation der Testfälle
Um die Anforderung A5 zu erfüllen, wurde über die Dokumentation, ob der Test erfolgreich
war, noch eine spezifische Einordnung, warum ein Testfall ggf. nicht erfolgreich war, in der
Dokumentation ergänzt. Die Testfälle geben nach Ausführung folgendem Schema Rückmel-
dung über deren Status:

Ausgabe Bedeutung

Error detected: TRUE/ FALSE Bei TRUE wurde der Alarm detektiert

Error-Code: 1 Die Vorbedingung Teil 1 wurde nicht erreicht

Error- Code: 2 Die Vorbedingung (FI injection Time) wurde nicht
erreicht

2 Lösungsweg zur Erreichung des Forschungsziels

35

Error- Code: 3 Die Fehlerreaktion wurde nicht beobachtet

Error- Code: 4 Zeitüberschreitung für Init

AbortErrorDetected (5) Der Abort wurde nicht in der vorgegebenen Zeit
ausgeführt

Faultreaction: PASS EvaluateReaction war erfolgreich

Faultreaction: FAIL EvaluateReaction war nicht erfolgreich

Faultreaction: TIMEOUT EvaluateReaction war wegen der Zeitüberschrei-
tung nicht erfolgreich

Abbildung 25: Dokumentation der Testfälle

 Software-Funktionsmuster als Basis der Evaluierung

2.5.1 Konzeption und Implementierung des Funktionsmusters
Zur Anwendung der Vorgehensweise können unterstützende Werkzeuge eine erhebliche Effi-
zienzsteigerung bewirken oder sogar erst ermöglichen. Vor allem im Bereich der Erstellung
der Modelle, wie auch bei der Testfallgenerierung ist eine Unterstützung sinnvoll. Dazu müs-
sen zunächst die Aktivitäten in Bezug auf mögliche Effizienzsteigerungen analysiert werden.
Anschließend können diese bezüglich ihrer Machbarkeit und des Aufwands zur Umsetzung
bewertet und ausgewählt werden.

Im Folgenden wird die – auf Basis dieser Anforderungen erstellte – Werkzeugunterstützung
beschrieben. Zunächst werden in Kapitel 2.5.2 die einzelnen Werkzeugfunktionen identifiziert
und beschrieben. Anschließend wird das Konzept der Werkzeugunterstützung – im Folgenden
als „ZuMaTra-Plugin“ bezeichnet – in Kapitel 2.5.3 erläutert und die Umsetzung in Kapitel 2.5.6
beschrieben.

2.5.2 Identifikation und Beschreibung der Werkzeugfunktionen
Ziel des ZuMaTra-Plugins ist die Effizienzsteigerung im Bereich der Testfallerstellung bzw. -
generierung. Fokus des Software-Funktionsmusters ist es, die ZuMaTra-Vorgehensweise ef-
fizient und intuitiv verständlich zu unterstützen.

Ein Überblick über die hierzu zu realisierenden Funktionalitäten ist in Abbildung 26 aufgezeigt.
Die Hauptfunktionalitäten des ZuMaTra-Plugins sind folgende:

Realisierung der ZuMaTra-Vorgehensweise: Zur Unterstützung der ZuMaTra-Vorgehens-
weise müssen die unter Kapitel 2.4 beschriebenen Schritte unterstützt werden. Der Nutzer des
Editors muss hierzu die Modellierungselemente des Weg-Zeit-Diagramms modellieren und die
Testtabelle spezifizieren können. Eine anschließende Testfallgenerierung und ebenso die
Ausführung der Testfälle muss adäquat unterstützt werden.

Realisierung von Editor-Funktionen: Zur Effizienzsteigerung bei der ZuMaTra-Vorgehens-
weise müssen Standard-Editor-Funktionalitäten bereitgestellt werden. Durch das ZuMaTra-
Plugin muss die grafische Erstellung und Parametrierung der Elemente möglich sein. Um Mo-
dellierungsprojekte zu einem Zeitpunkt unterbrechen und später wieder fortsetzen zu können,
müssen Modelle gespeichert und geladen werden können.

Einbindung in die Werkzeugkette: Um den Editor in die unternehmensspezifische Werkzeug-
kette integrieren zu können, sind entsprechende Austauschformate anzubieten. Hierzu wird
für die Übergabe der Testfälle an eine Programmierumgebung für die Testausführung das
PLCopen XML-Format gewählt. Des Weiteren soll zu Dokumentationszwecken der Testreport
so ausführlich wie möglich erfolgen. Hierfür wurde eine sInfo-Variable angelegt, die durch den
CODESYS-Testmanager automatisch ausgewertet, ggf. aber auch manuell abgefragt werden
kann.

2 Lösungsweg zur Erreichung des Forschungsziels

36

Abbildung 26: Überblick über das ZuMaTra-Plugin

2.5.3 Aufbau des Editors
Zur Realisierung der zuvor identifizierten Funktionalitäten wird im Folgenden das Konzept des
ZuMaTra-Plugins erläutert.

Der Aufbau des ZuMaTra-Plugins ist in Abbildung 27 dargestellt. Neben einer Symbolleiste
zur Erstellung der ZuMaTra-Modellierungselemente, in welcher der Nutzer des Editors die zu
erstellenden Elemente auswählen kann, gibt eine Baumansicht einen Überblick über die Ele-
mente des Modells. Innerhalb des Diagrammbereichs können somit Elemente im Zeichenbe-
reich platziert und im Eigenschaftsbereich bearbeitet werden.

2 Lösungsweg zur Erreichung des Forschungsziels

37

Abbildung 27: Übersicht ZuMaTra-Plugin

2.5.4 Codeanalyse im Editor
Für die Codeanalyse wird das ZuMaTra-Diagramm im Editor bereitgestellt. Eine Schnittstelle
für den Import von PLCopen XML-Dateien ermöglicht das Importieren von Projekten bezie-
hungsweise Funktionsbausteinen aus TwinCAT und CODESYS.

Die Funktionsbausteine können dann im Objektbaum ausgewählt und direkt als Text angezeigt
werden. Zur Generierung des Kontrollflusses werden in der Menüleiste entsprechende Buttons
dargestellt.

Symbolleiste

Zeichenbereich

Eigen-
schafts-
bereich

Objekt-
baum

2 Lösungsweg zur Erreichung des Forschungsziels

38

Abbildung 28: PLCopen XML-Import (CODESYS-/TwinCAT3-Format) in das ZuMaTra-
PlugIn

Im Objektbaum können die Regeln zur Überprüfung des Kontrollflusses angegeben werden.
Per Rechtsklick kann eine neue Regel eingegeben werden. Im Editor steht dann das im Kon-
zept entworfene Template mit entsprechenden Feldern zur Verfügung:

 Target: Modell, das untersucht werden soll (CFG oder iCFG)

 Paths: Pfade die untersucht werden sollen

 PathCondition: Bedingung die überprüft werden soll

2.5.5 Das Weg-Zeit-Diagramm, die Testfallgenerierung und Testtabelle im Editor
Um die Modellierung im Editor möglichst effizient und verständlich zu gestalten, sollen die
ZuMaTra-Modellierungselemente möglichst exakt im ZuMaTra-Plugin abgebildet werden. Dies
beinhaltet zum einen die exakte grafische Darstellung der Modellierungselemente, zum ande-
ren die Ermöglichung der Spezifikation der Inhalte der Modellierungselemente. Mehrere Bei-
spiele für diese Umsetzung können in Abbildung 32 oder Abbildung 36 bzw. im Leitfaden nach-
vollzogen werden.

Die Testfallgenerierung wurde entsprechend der in Kapitel 2.4.2 definierten Fehleroperatoren
umgesetzt. Die Vorbedingung wird aus den Locations – also dem modellierten Verlauf – des
Modells extrahiert.

Die manuell ergänzten Informationen in der Testtabelle werden zusammen mit den aus dem
Weg-Zeit-Diagramm gewonnenen Informationen in ein PLCopen XML übersetzt.

2.5.6 Umsetzung
Die Realisierung des ZuMaTra-Plugins erfolgte unter Verwendung der Programmiersprache
C# .NET in der Entwicklungsumgebung Microsoft Visual Studio. Der Leitfaden sowie ein In-
staller für das ZuMaTra-Plugin können unter der URL http://zumatra.ais.mw.tum.de/ bezogen
werden. Als Basis für die Implementierung des ZuMaTra-Plugins wurde das in Abbildung 38
und Tabelle 2 vorgestellte Metamodell hinzugezogen.

 Evaluierung der Konzepte
Um einerseits die Machbarkeit und andererseits die Anwendbarkeit der ZuMaTra-Codeana-
lyse, Modellierung und Testgenerierung und -ausführung für Industriebeispiele zu überprüfen,

Project.xml

2 Lösungsweg zur Erreichung des Forschungsziels

39

wurden ein Anwendungsbeispiel aus der Industrie im Rahmen einer Machbarkeitsstudie und
ein Anwendungsbeispiel im Rahmen eines Workshops gemeinsam mit den Teilnehmern erar-
beitet. Die Codeanalyse wurde anhand einiger Bausteine mit begrenzter Komplexität evaluiert.

2.6.1 Evaluierung der Codeanalyse
Die Regeln wurden entsprechend Anforderung A9 entworfen und an einigen Beispielen getes-
tet, wie beispielsweise dem hier dargestellten:

Der Funktionsbaustein wurde per PLCopen XML aus CODESYS exportiert und in das Zu-
MaTra-Plugin importiert (Menü Load PLCopen XML). Durch Auswahl des Menüpunkts „Gene-
rate AST(s)/ CFG(s)“ werden der abstrakte Syntaxbaum und der Kontrollfluss des Funktions-
bausteins generiert.

In Abbildung 29 ist der Kontrollfluss und die Regelüberprüfung der Regel „errorStatus muss in
jedem möglichen Pfad geschrieben werden“ dargestellt. In dem einfachen dargestellten Kon-
trollfluss ist ein Pfad, bei dem diese Regel verletzt wird, rot markiert.

PROGRAM testRule

VAR

 i1: INT;

 i2: INT;

 i3: INT;

 END_VAR

var1 := var2+senspr1;

var2 := sensor2*5 + 20;

IF (sensor3 > defaultValue) THEN

 errorStatus:=1;

 var3 := var1 + var2 + sensor4;

 actor1 := TRUE;

ELSIF (sensor3 < 5) THEN

 errorStatus:=2;

 actor2 := TRUE;

END_IF;

CASE status OF

1, 5:

 var5 := var1;

 actor3 := TRUE;

 errorStatus:=3;

2:

 var3 := var1 + var2 + sensor4;

 actor1 := FALSE;

 actor2 := FALSE;

 errorStatus:=4;

10..20:

 var3 := sensor4;

 actor1 := FALSE;

0..11:

 var3 := var2 + sensor4;

 actor1 := FALSE;

 errorStatus:=5;

END_CASE;

 var3 := var1 + var2 + sensor4;

 actor4 := TRUE;

 actor1 := FALSE;

END_PROGRAM

2 Lösungsweg zur Erreichung des Forschungsziels

40

Abbildung 29: Regel 1 als Beispiel für die Regeln im ZuMaTra-PlugIn

Der grundsätzliche Nachweis der Machbarkeit konnte durch das Funktionsmuster erbracht
werden. Die Skalierbarkeit der Pfadanalyse und der Umgang mit Komplexität ist jedoch noch
eine offene Frage, da für den Funktionsnachweis die Anzahl der Pfade auf 100.000 beschränkt
wurde, was für aktuelle Anwendungsbeispiele aus der Industrie nicht immer ausreichend ist.
Die Optimierung der Algorithmen zur Pfadanalyse müssen daher ggf. verbessert werden oder
sehr hohe Rechenzeiten in Kauf genommen werden.

Neben dem Nachweis für strukturierten Text konnte in einer Bachelorarbeit der Nachweis der
Machbarkeit für Funktionsblockdiagramme erbracht werden [Ta14]. Hier ist hervorzuheben,
dass der Ansatz für komplexe Funktionsblockdiagramme erbracht werden konnte, da Funkti-
onsblockdiagramme in der Regel deutlich weniger Verzweigungen im Kontrollfluss aufweisen.

2.6.2 Evaluierung der Vorgehensweise für den Test von Fehlerbehandlungsroutinen
an einem Anwendungsbeispiel mit kontinuierlichen Prozessen

2.6.2.1 Das Anwendungsbeispiel Pflasterverarbeitung

Die von Harro Höfliger zur Verfügung gestellt Maschine für die Machbarkeitsstudie ist in Ab-
bildung 30 dargestellt. Zusätzlich wurde ein SoMachinMotion-Programm für den Betrieb der

Name :

Target: CFG;
Paths: ALL;

PathCondition: W#errorStatus;

Rule 1

2 Lösungsweg zur Erreichung des Forschungsziels

41

Maschine zur Verfügung gestellt. Fehler die an der Maschine behandelt werden müssen, sind
zum einen Fehler die von den Antrieben kommen, zum anderen die Regelung bzw. die Abwei-
chung von der Tänzerposition bei der Abwicklung und bei der Aufwicklung wie z.B. eine zu
starke Abweichung von der Mittelposition bei verschiedenen Zuständen – Anlauf, Betrieb,
Stopp, Kalibrierung.

Abbildung 30: Anwendungsbeispiel eines kontinuierlichen Prozesses

2.6.2.2 Vorgehen bei der Machbarkeitsstudie
Nach einer intensiven Analyse des Anwendungsbeispiels wurden diverse Testfälle entworfen,
bzw. die Methodik noch einmal iterativ nach diversen Fehlversuchen angepasst.

Test der Reaktion der Maschine auf Antriebsfehler
Es wurde schnell klar, dass für den Test der Antriebe ein Entwurf im Weg-Zeit-Diagramm kei-
nen Sinn macht, da auf Applikationsebene lediglich die richtige Konfiguration getestet werden
muss.

Die genaue Fehlermeldung liefert die Diagnose des Antriebsherstellers. Dementsprechend
wurde eine Fehlerursache, die sich für die Fehlerinjektion bei Antrieben eignet – der Schlepp-
fehler – identifiziert. Ziel ist es, dass der physikalische Zustand der Maschine mit dem in der
Steuerung identifizierten Zustand nicht abweicht, da es sonst zu gefährliche Zuständen kom-
men kann.

In Abbildung 31 sind die für die Antriebe entworfenen Testfälle dargestellt. Einzige Vorausset-
zung für einen sinnvollen Test ist, dass die Antriebe laufen. Demzufolge wird dies als Vorbe-
dingung für die Testfälle angegeben. Die Anforderung, dass der physikalische Zustand dem
erkannten Zustand in der Steuerung entspricht kann durch die Injektion eines Schleppfehlers,

2 Lösungsweg zur Erreichung des Forschungsziels

42

durch Herabsetzung des Nutzstroms erreicht werden. Dementsprechend ist die Fehlerinjektion
die Herabsetzung des Stroms eines Antriebs (vgl. FI Code Abbildung 31).

Die dargestellten Testfälle wurden erfolgreich an der Maschine erprobt. In einem Testlauf wur-
den 5 von 7 Testfällen erfolgreich durchgeführt. Danach konnte der Lauf nicht automatisiert
fortgeführt werden, da die Maschinenparametrierung durch dem 5. Testlauf nicht mehr korrekt
war und eine Neuparametrierung erforderlich wurde.

2 Lösungsweg zur Erreichung des Forschungsziels

43

Abbildung 31: Testfälle für den Test von Antriebsfehlern

2 Lösungsweg zur Erreichung des Forschungsziels

44

Test der Reglerbausteine
Im Gegensatz zu diskreten Prozessen stellte die Modellierung kontinuierlicher Systeme eine
erheblich höhere Anforderung an die Modellierung im Weg-Zeit-Diagramm. Für die Regelung
ist lediglich ein Sensorwert – die Tänzerposition – relevant. Dennoch gibt es einige komplexe
Abläufe zu beachten, welche durch weitere Steuervariablen gesteuert werden. Bei der Analyse
der Bausteine wurden 12 verschiedene Zustände des Reglerbausteins identifiziert, inklusive
Kalibrierung, Wartezuständen, Überprüfungen der korrekten Position, Start-Zustand, Automa-
tikmodus, etc.

Um verschieden Szenarien, die auch durch Fehlerbehandlungen überprüft werden müssen,
abzubilden, kam daher insbesondere das Modellierungselement „ControlValueLifeline“ zum
Einsatz (vgl. Abbildung 32). Weiterhin musste das Modellierungselement „IntervalConstraint“
angepasst werden, da Anforderungen wie „es darf bei dem Automatikbetrieb zu einer maxi-
malen Abweichung von 5 % zur Mittelposition kommen“ nur durch die Angabe einer Variablen
und nicht durch die Angabe einer festen Zahl ausdrückbar sind. Bei der Durchführung wurde
festgestellt, dass die Vorbedingung teilweise noch zu eng gefasst sind, da die in Abbildung 32
dargestellte Vorbedingung, dass das gültige Intervall innerhalb von 6 Sekunden verlassen
wird, nicht eingehalten werden kann.

Mit einer manuellen Anpassung der Vorbedingung konnten erfolgreich Testfälle durchgeführt
werden. Eine weitere Untersuchung mit dem neu definierte „don’t care“ Element (siehe folgen-
der Abschnitt) könnte das Problem ggf. auch beheben, eine Untersuchung steht hier jedoch
noch aus.

Abbildung 32: Modellierung der Soll-Position des Tänzers

Festhalten lässt sich, dass die grundsätzliche Machbarkeit gezeigt werden konnte. Insbeson-
dere war erkenntlich, dass für die Modellierung kontinuierlicher Systeme andere Modellie-
rungselemente wichtig sind, als bei der Modellierung diskreter Prozesse.

Der Nutzen-Faktor eines modellbasierten Ansatzes konnte ebenfalls noch nicht nachgewiesen
werden, da hier vermutlich noch weitere Anpassungen und Nachweise notwendig sind.

2.6.3 Evaluierung der Vorgehensweise für den Test von Fehlerbehandlungsroutinen
in einem Workshop an einem Anwendungsbeispiel mit diskreten Prozessen

2.6.3.1 Das Anwendungsbeispiel Trainingsstation
Als Anwendungsbeispiel wurde für den Workshop von Bosch die in Abbildung 33 dargestellte
Maschine zur Verfügung gestellt. Weiterhin stand für das Evaluationsbeispiel ein fertig imple-
mentiertes TwinCat 3-Programm zur Verfügung.

2 Lösungsweg zur Erreichung des Forschungsziels

45

Da entsprechend ohne den CODESYS Test Manager gearbeitet werden musste, wurde wei-
terhin ein Programm für die Ausführung, Visualisierung und Dokumentation erarbeitet, was
einen zusätzlichen Aufwand von ca. einem Tag bedeutete.

Abbildung 33: Trainingsstation Bosch

2.6.3.2 Workshop-Durchführung und Ergebnisse
Der Workshop wurde anhand folgender Vorgehensweise durchgeführt:

Vorstellung und Diskussion des Leitfadens: Anhand eines Leitfadens wurde die ZuMaTra-Mo-
dellierungsmethodik und Vorgehensweise vorgestellt und diskutiert. Als Beispiel wurde die
Sortier- und Stempelanlage mit Fokus auf den Stempel gewählt. Der Leitfaden kann im An-
hang (Anhang CD: Leitfaden ZuMaTra) entnommen werden.

Gemeinschaftliche Erarbeitung der Anwendungsbeispiele: Das zuvor definierte Anwendungs-
beispiel wurde anhand von definierten Aufgaben einzeln von den Workshop-Teilnehmern er-
arbeitet. Neben der Aufgabenstellung wurde den Teilnehmern eine Spezifikation der Code-
Schnipsel zur Verfügung gestellt (Anhang CD: Zusatzmaterial Workshop Bosch).

Durchführung der Testfälle an der Trainingsstation: Die Testfälle wurden an der Trainingssta-
tion erprobt.

Diskussion der Ergebnisse: Die Ergebnisse des Workshops wurden in einer Fokusgruppe dis-
kutiert. Hierbei wurde zum einen auf die Anwendbarkeit der Vorgehensweise und Modellierung
allgemein, zum anderen auf die Verbesserung der Anwendbarkeit durch eine Verbesserung
der Werkzeugunterstützung eingegangen.

Allgemeine Ergebnisse:
Insgesamt nahmen an dem Workshop 7 Experten teil. Davon waren 5 Anwender, 1 Kompo-
nentenhersteller und 1 Plattformentwickler. Die Schulung nahm ca. 1,5 Stunden in Anspruch,
die Erarbeitung und Durchführung des Beispiels ca. 4 Stunden und die Expertendiskussion
ca. 45 min. Von den 7 Teilnehmern gab es eine 2er-Gruppe, es wurden also 6 Beispiele erar-
beitet. Von 6 Beispielen konnten 2 erfolgreiche Testläufe durchführen. Bei 2 weiteren war die
Zeit, auch aufgrund von Problemen mit dem Editor, zu knapp und bei den anderen war ein
Fehler an der Modellierung für den Fehlschlag der Testfälle verantwortlich. Die Ursachen hier-
für wurden in der Expertendiskussion vertieft.

2 Lösungsweg zur Erreichung des Forschungsziels

46

2.6.3.3 Ergebnisse der Expertendiskussion
Allgemein wurde festgehalten, dass das Weg-Zeit-Diagramm intuitiv und einfach erlernbar ist
und eine gute Überschaubarkeit der Darstellung erlaubt. Auch die Ausdrucksmächtigkeit des
Weg-Zeit-Diagramms und die wählbare Granularität/Abstraktion wurden positiv aufgenommen
(Erfüllung der Anforderung A3).

Anforderungsbewertung durch die Experten:
Der Aufbau der Testfälle wurde als passend bewertet mit der Angabe der Init-, Abbruch- und
Überprüfungsroutinen als Code-Schnipsel (Randbedingung RB 1, RB 2 und RB 4).

Die generierten Testfälle – also die definierten Fehleroperatoren – wurden als sinnvoll und den
Anforderungen entsprechend eingestuft (A6 und A7). Damit lässt sich die Abdeckung von mo-
dellierten Anforderungen und die Überprüfung dieser dokumentieren und nachweisen (A5).

Die automatische Generierung und automatische bzw. semi-automatische Durchführung
wurde als Effizienzsteigerung im Gegensatz zu aktuellen Vorgehensweisen bewertet.

Anforderungen für eine Weiterentwicklung der Notation, der Vorgehensweise und des
Editors
Um den Anwender besser bei der Erstellung zu unterstützen gib es einige allgemeine Anfor-
derungen, die durch eine adäquate Werkzeugunterstützung erfüllt werden sollten.

• Speichern unter; projektbezogener, standardmäßiger Dateiname beim Speichern; But-
ton für das Speichern

• Drucken und Screen-Shots

• Bei der Erstellung eines Elements, sollte dieses gleich angewählt bleiben, damit des-
sen Eigenschaften im Eigenschafts-Editor bearbeitet werden können

• Das Löschen von Elementen war nicht immer fehlerfrei möglich

• „Copy & Paste“-Funktionen für die Modellierungselemente

• Sortierkriterien für Aktionen und Objekte im Objektbaum

Neben der allgemeinen Kritik zum Editor wurden folgende Verbesserungspotentiale bei der
Modellierung mit dem Weg-Zeit-Diagramm festgehalten (siehe auch Abbildung 34):

• Bezüglich des Editors sind folgende Punkte zu verbessern

– Fangbereich für „TimeLinePoints“ vergrößern

– Gruppierung und neue Anordnung von „Lifelines“ ermöglichen

– Verschieben und Einfügen von Locations besser unterstützen, Schriftgröße

– Messages verschieben ermöglichen

– Automatische Skalierung der Zeit (nach „Duration Intervals“)

• Bezüglich der Modellierung/Notation wurden folgende Punkte aufgenommen

– „Don‘t care“-Zustände („StateInvariants“ ermöglichen)

– Kommentar als zusätzliches Modellierungselement

– Benennung von Locations ermöglichen

– Modularisierung und Kapselung besser unterstützen/ermöglichen

• Wiederverwendung einzelner „Lifelines“/ einer gruppierten Menge von
„Lifelines“ und Ermöglichen einer reinen Anzeige von „Lifelines“ ohne
Testfallgenerierung

– Standardmäßige Vorgabe einer Zeitachse

2 Lösungsweg zur Erreichung des Forschungsziels

47

Abbildung 34: Verbesserung der Modellierung im Weg-Zeit-Diagramm

Von den Anforderungen wurden im Nachgang noch einige Punkte aufgenommen (grüne Häk-
chen in Abbildung 34), wie die Einführung von der Angabe von „StateInvariant“-Werten mit
„don’t care“. Dies hat den Vorteil, dass der Anwender spezifizieren kann, wann bestimmte
Zustände ggf. nicht relevant für eine Testfallgenerierung sind.

Bezüglich der Testfallgenerierung wurde folgendes Feedback aufgenommen:

• Einführung eines zusätzlichen Fehleroperators „&“ auf konstante „StateInvariant“-Ab-
schnitte.

• Einführung von „Locked“-Variablen, für die eine Fehlerinjektion explizit freigegeben
werden muss (sicherheitskritische Fehler bzw. Fehlerbehandlungen).

Durch den Fehleroperator werden Testfälle generiert, bei denen Verschränkungsbedingungen
überprüft werden können und wurde bereits in dem Prototyp umgesetzt. Die „Locked“-Variab-
len sollen für sicherheitskritische Fehlerinjektionen gesetzt werden können, um beispielsweise
bei kritischen Tests eine explizite Freigabe durch berechtigte Personen zu verlangen.

Zur Testtabelle wurde Folgendes festgehalten:

• Nachvollziehbarkeit Weg-Zeit-Diagramm – Testfälle/Testtabelle schwierig

– Symbolische Bezeichnungen in Testtabelle anzeigen/verwenden

– Doppelte Ansicht Weg-Zeit-Diagramm – Testtabelle: Optimale Lösung – bei An-
wählen eines Testfalls wird dieser im Weg-Zeit-Diagramm visualisiert (wie in
Abbildung 35 dargestellt)

• Testfälle die abgewählt wurden ausgrauen, nicht komplett löschen oder -1

• Kommentieren der Testfälle ermöglichen

2 Lösungsweg zur Erreichung des Forschungsziels

48

Abbildung 35: Parallele Ansicht Tabelle und Modellierung

Der Punkt der symbolischen Bezeichnung wurde in Folge noch innerhalb des Projekts umge-
setzt. Eine der wichtigsten Anforderungen für eine Entwicklung zum Produkt muss mit der
Synchronisation des Weg-Zeit-Diagramms mit der Testtabelle hervorgehoben werden. 2 der
Testläufe scheiterten an dieser fehlenden Funktion, da die Testtabelle bei einer Neu-Generie-
rung aus dem Weg-Zeit-Diagramm komplett neu generiert wird. Dadurch gehen bereits er-
gänzte Informationen in der Testtabelle vollständig verloren, was einen erheblichen Mehrauf-
wand bedeutet.

Eine weitere erhebliche Verbesserung der Anwendbarkeit wurde einer engeren Integration mit
Programmierumgebungen prognostiziert. Der Import von Variablen bzw. das Einlesen von Va-
riablenlisten und Auswahl mit Drop-Down-Menüs in den Eigenschaftsbereichen würde die Da-
tendurchgängigkeit erhöhen und dementsprechend Fehler bei der Spezifikation vermindern.

Zusammenfassend konnte durch den Workshop das Potential, die Machbarkeit des Ansatzes
und die Lücke zu einer Einführung in die Industrie eindeutig aufgezeigt werden.

2.6.4 Beantwortung eines Fragebogens zur Bewertung des Gesamtkonzepts
Beantwortung eines Fragebogens: Mittels eines Fragebogens wurden der Projektausschuss
befragt, inwiefern die ZuMaTra-Codeanalyse, Modellierungsmethodik und Vorgehensweise
die Testfallerstellung und den Testprozess allgemein verbessern kann. Der Fragebogen kann

2 Lösungsweg zur Erreichung des Forschungsziels

49

dem Anhang (Anhang CD: Fragebogen ZuMaTra) entnommen werden. Vom Projektaus-
schuss wurden 9 Fragebögen mit Teilnehmern aus 7 Unternehmen beantwortet.

Die allgemeine Auswertung des ZuMaTra-Ansatzes im Vergleich zu aktuellen Vorgehenswei-
sen in den Unternehmen zeigt eine Verbesserung des Testprozesses auf allen Ebenen. Ins-
besondere die Erhöhung des Automatisierungsgrades bei der Durchführung und Erstellung
von Testfällen zeigt die Erfüllung der Anforderungen an den Ansatz.

Abbildung 36: Bewertung des ZuMaTra-Ansatzes im Vergleich zur aktuellen Vorgehens-
weisen - 1: voll erfüllt, 6: überhaupt nicht erfüllt

Das Meinungsbild über die Notation des Weg-Zeit-Diagramms spiegelt die Erfahrungen wäh-
rend der Machbarkeitsstudie und des Workshops wieder. Man sieht, dass die Fokusgruppe
die Abbildung diskreter Prozesse deutlich besser, als die Modellierung kontinuierlicher Pro-
zesse einschätzt. Die gute Bewertung der Verständlichkeit und Erlernbarkeit der Notation kann
vermutlich auf die Verwendung und Anpassung bereits vorhandener Notationen in den Unter-
nehmen zurückgeführt werden.

Bei der Codeanalyse sind die Ergebnisse ebenso tendenziell positiv. Die Anforderung der
Nachvollziehbarkeit von fehlerhaften Kontrollflusspfaden wird durch die einfache Visualisie-
rung von fehlerhaften Pfaden gut erfüllt. Die Einschätzung, dass die Qualitätssicherung und
Überprüfung von Ausführungsrichtlinien noch nicht ausgereizt sind, zeigt jedoch einen weite-
ren Handlungsbedarf in diesem Bereich.

Strukturierte Vorgehensweise allgemein

Strukturierte Vorgehensweise für Fehlerszenarientests

Strukturierte Vorgehensweise für Antriebsbausteinentests

Automatisierungsgrad der Testfallerstellung

Automatisierungsgrad der Testfalldurchführung

Qualitätssicherung der Steuerungssoftware

1 2 3 4 5 6

ZuMaTra-Ansatz Ist-Situation Unternehmen

2 Lösungsweg zur Erreichung des Forschungsziels

50

Abbildung 37: Evaluierung des ZuMaTra-Ansatzes - 1: voll erfüllt, 6: überhaupt nicht
erfüllt

Neben den vorgegebenen Fragen konnten die Teilnehmer der Umfrage auch weiteres Feed-
back zu den Ansätzen und Teilansätzen geben.

2.6.4.1 Feedback und weitere Potentiale zur Codeanalyse
Zur Codeanalyse wurde hervorgehoben, dass ggf. nicht nur bestimmte Ausführungsrichtlinien,
sondern auch Programmiermuster eingehalten werden müssen. Dies stellt eine weitere Her-
ausforderung an Folgeprojekte. Weiterhin wurde hervorgehoben, dass es tendenziell immer
Pfade gibt, in denen bestimmte Regeln nicht gelten. Hier müssen Mechanismen zur Definition
von Ausnahmen und insbesondere eine Dokumentation dieser geschaffen werden. Die Visu-
alisierung des Codes als Kontrollfluss wurde außerdem für Bausteine mit begrenzter Komple-
xität als hilfreich eingestuft. Der Umgang mit komplexeren Bausteinen birgt ein weiteres Un-
tersuchungspotential.

2.6.4.2 Feedback zum Test von Fehlerbehandlungsroutinen
Für die bessere Einsetzbarkeit der Methodik wurde die Notwendigkeit der Datendurchgängig-
keit hervorgehoben. Es müssen Schnittstellen und Austauschformate zu anderen Engineering-
Werkzeugen geschaffen werden, um Arbeiten wie die manuelle Übertragung von Daten zu
vermeiden. Ein Beispiel für ein solches Modellierungswerkzeug ist das EPLAN Engineering
Center.

Ein weiterer Hinweis zur Anwendbarkeit war, dass die Lösung auch für Siemens umgesetzt
werden müsste, um ein weitere Anwender zu erreichen, da hier noch einige Unterschiede zur
CODESYS-Welt bestehen.

Für den Test kontinuierlicher Systeme sind insbesondere Regler, wie auch in dem Beispiel
gezeigt, wichtig. Hier müsste die Modellierung von Reglerverhalten genauer untersucht und in

Softwareüblicher Aufbau

Erleichterung der Testfallerstellung und -generierung

Sinnhaftigkeit der Fehlerszenarien

Zeitsparende Erstellung

Erlernbarkeit

Verständlichkeit

Abbildung diskreter Prozesse

Abstraktionsgrad

Abbildung kontinuierlicher Prozesse

Überprüfung der Ausführungsrichtlinien

Verständnis

Fehlererkennung

Verbesserung der Qualitätssicherung

1 2 3 4 5 6

Testfälle Testfallgenerierung Modellierung Codeanalyse

2 Lösungsweg zur Erreichung des Forschungsziels

51

den Ansatz integriert werden. Ein weiteres Potential wird insbesondere bei der Simulation von
kontinuierlichen Systemen gesehen.

2.6.5 Zusammenfassung der Evaluierung
Durch die entwickelten Methoden und die mehrstufige Evaluierung durch Machbarkeitsnach-
weis, Workshop und Umfrage konnte gezeigt werden, dass die zu Beginn gesetzten Anforde-
rungen erfüllt und die Randbedingungen eingehalten werden konnten.

Die Anforderungen und Randbedingungen sind im Folgenden noch einmal zusammengefasst.

Anforderung 1 wurde erfüllt, indem insbesondere der Testerstellungsprozess so weit wie mög-
lich automatisiert wurde. Die Modellierung des Gutverhaltens im Weg-Zeit-Diagramm ermög-
licht die automatische Generierung zahlreicher Testfälle für die Fehlerinjektion. Die Generie-

A1: der Automatisierungsgrad der Testerstellung und –ausführung muss möglichst hoch
sein.

A2: Durchführbarkeit sowohl gegen eine Simulation als auch gegen die reale Maschine

A3: freie Wahl des Abstraktionsgrades bei der Modellierung

A4: die Neugenerierung von Testfällen und Anpassung von Modellen als Grundlage für die
Generierung muss möglich sein

A5: Nachweis des Abdeckungsgrades der Anforderungen sowie der Dokumentation für den
Kunden

A6: Test von relevanten Fehlerszenarien

A7: Testfallgenerierung aus Weg-Zeit-Diagrammen

A8: optionale Verwendung der FMEA für die Priorisierung der Testfälle

A9: Die Codeanalyseregeln sollen entsprechend der aus den Unternehmen analysierten
Regeln und den Verriegelungsbedingungen möglich sein

RB 1: Alle Anwendungsbeispiele enthalten Routinen für eine Grundstellungsfahrt/ Refe-
renzpunktfahrt/ Reset.

RB 2: manuelle Eingriffe durch den Operator während der Testausführung müssen spezi-
fizierbar sein.

RB 3: Für den Test relevanter Fehlerszenarien müssen Fehler entsprechend der unter-
suchten Fehlererkennungsmechanismen injiziert werden

RB 3.1: Zur Überprüfung von Verriegelungsbedingungen muss der Kontrollfluss untersucht
werden

RB 3.2: Zur Überprüfung von Fehlerbehandlungen von bestimmten Szenarien (Prüfung Pa-
rametrierung, Prüfung (Sensoren), Überprüfung komplexes Signal und Sammelfehler) soll
eine anforderungs- bzw. modellbasierte Testfallgenerierung durchgeführt werden

RB 4: Tests zur Prüfung von Fehlerbehandlungen können aufgeteilt werden in:

• Fehlerindividueller Teil: Test der richtigen Fehlererkennung und Meldung

• Test der richtigen Fehlerbehandlung für verschiedene Fehlerbehandlungsklassen

RB 5: eine Abbruchroutine muss vorgesehen werden um undefinierte Zustände zu vermei-
den

2 Lösungsweg zur Erreichung des Forschungsziels

52

rung von Test-Funktionsbausteinen aus dem Weg-Zeit-Diagramm und der Testtabelle ermög-
licht eine nahtlose Überführung ausführbarer Testfälle in die Programmierumgebungen. Die
Auswahl einer automatischen oder semi-automatischen Ausführung ermöglicht den Testern
volle Flexibilität. Der Automatisierungsgrad der Testerstellung und –ausführung konnte auch
laut Ergebnis der Umfrage (Abbildung 36: Bewertung des ZuMaTra-Ansatzes im Vergleich zur
aktuellen Vorgehensweisen - 1: voll erfüllt, 6: überhaupt nicht erfülltAbbildung 36) erheblich
erhöht werden und in dem Workshop mit den Unternehmen konnte die Durchführbarkeit der
Tests gegen die reale Maschine gezeigt werden (A2).

Auf die Einhaltung der Anforderungen A3, A4, A7 und A8 wurde bereits inhärent während der
Entwicklung der Konzepte geachtet. Die Generierung von Testfällen aus Weg-Zeit-Diagram-
men, in denen das Gutverhalten modelliert ist, wurde konzipiert und evaluiert. A4 wird soweit
abgedeckt, dass das Weg-Zeit-Diagramm stets geändert und neugeneriert werden kann. Ver-
besserungspotential bietet noch die Beibehaltung der bereits spezifizierten Daten in der Test-
tabelle um diese Anforderung vollständig zu erfüllen. Auch die Wahl des Abstraktionsgrades
wurde von den Teilnehmern der Evaluation als gut bewertet.

Die Erstellung der FMEA wurde als optionaler Teil in den Ansatz integriert (A8). Ein kurzer
Leitfaden zeigt, wie Fehler und Fehlerbehandlungen nach Risiko priorisiert werden können.
Eine hohe Priorisierung kann in die konzipierte Testtabelle durch die manuelle Priorisierung
übertragen werden. Die manuelle Priorisierung erlaubt es dem Tester alternativ auch nach
Erfahrungswerten zu priorisieren.

Weiterhin wurde bei der Generierung der Testfällen die nach den Randbedingungen RB 1, RB
2, RB 4 und RB 4 vorgegebene Struktur eingehalten, welche nach der Fragebogenevaluation
auch nochmals als sinnvoll bestätigt wurde eingehalten. Die Machbarkeit gegen eine Simula-
tion wurde nicht gezeigt, wäre aber grundsätzlich durch einen Austausch der Maschine gegen
eine Simulation denkbar. Der Nachweis des Abdeckungsgrades der Anforderungen sowie der
Dokumentation (A5) konnte anhand der Aufgabenstellung und Abdeckung der Testfälle aller
Anforderungen in dem Workshop illustriert werden. Die nach RB 3.2 relevanten Fehlerszena-
rien (A6) wurden alle im Ansatz berücksichtigt und in der Umfrage noch einmal bestätigt (Ab-
bildung 37). Die Regeln welche sich zur Codeanalyse eignen (RB3.1) wurden weiterhin imple-
mentiert und überprüft.

 Ergebnistransfer in die Wirtschaft
Ein zentrales Ziel des Forschungsvorhabens war die wissenschaftlich fundierten Resultate an-
wenderbezogen aufzubereiten. Für einen reibungslosen und stetigen Informationsfluss be-
durfte es verschiedener Maßnahmen bereits während der Projektlaufzeit. In regelmäßigen
Projekttreffen werden die Projektfortschritte den Mitgliedern des Projektbeirats und weiteren
interessierten Unternehmen vorgestellt und die Ergebnisse vor dem Hintergrund der Praxiser-
fahrung der Industrie reflektiert. Die Veröffentlichungen von Ergebnissen auf einschlägigen
Konferenzen (IFAC World Congress) waren, ebenso wie die öffentliche Präsentation der Zwi-
schen- und Endergebnisse, obligatorisch. Darüber hinaus wurden die Projektergebnisse und
Konzepte auf einer Messe (SPS/IPC/Drives Kongress) vorgestellt. Auf dem regelmäßig statt-
findenden Automation Symposium der Forschungsstelle, an dem ca. 60 Teilnehmer größten-
teils aus der industriellen Praxis teilnehmen, dem auch Workshops vorausgehen, wurden zu-
dem die Ergebnisse und Konzepte als Präsentation bzw. Demonstration mit den Laboranlagen
des Lehrstuhls vorgestellt. Zusätzlich fand ein Workshop im Rahmen des Projekts mit den
Mitgliedern des Projektausschusses statt, der die Ergebnisse des Forschungsvorhabens an
Interessensvertreter der Industrie transportiert. Die Anwendung des Software-Funktionsmus-
ters wurde in einem Leitfaden festgehalten und ist unter http://zumatra.ais.mw.tum.de/ veröf-
fentlicht.

Die Forschungsstelle ist darauf bedacht die neuesten wissenschaftlichen Erkenntnisse und
deren praktischen Nutzen auch über das Projektende hinaus weiter zu vermitteln. Neben dem
starken Industriebezug der Forschungsstelle wurde und wird weiterhin ein Wissenstransfer an
die angehenden Ingenieure über die universitären Lehrveranstaltungen Softwareentwicklung

2 Lösungsweg zur Erreichung des Forschungsziels

53

für Ingenieure 1 & 2 erfolgen. Dadurch werden „Berufseinsteiger“ frühzeitig mit den neuesten
Erkenntnissen ausgebildet und können somit neue Impulse setzen. Die wissenschaftlich erar-
beiteten Methoden fließen nach Projektende in Dissertationen und dokumentieren die Rele-
vanz des Forschungsvorhabens.

Eine Übersicht über die realisierten und weiterhin geplanten Maßnahmen zum Ergebnistrans-
fer ist in Tabelle 4 dargestellt. Die Workshops stellten sich als besonders erfolgreich für den
Ergebnistransfer heraus weshalb das Schulungskonzept, welches am 06.02.2015 erstmalig
umgesetzt wird, als besonders erfolgsversprechend erachtet wird.

Tabelle 4: Maßnahmen zum Ergebnistransfer

 Maßnahme Ziel Rahmen Datum

Während der
Projektlauf-

zeit
(01.01.2012 –
30.09.2014)

Diskussionsforum
zusammen mit

PA

Fortschrittsberichte, Dis-
kussionen und Koordina-
tion weiterer Schritte, In-

formationsverbreitung

PA-Sitzungen

10.05.2012,
23.10.2012,
16.07.2013,
03.12.2013,
12.03.2014,
22.05.2014,
23.07.2014,

Vergabe
studentischer

Arbeiten

Studierende frühzeitig an
neue Erkenntnisse heran-
führen, Umsetzung und
Evaluierung von Teilas-

pekten

Semester-
und Ab-

schlussarbei-
ten

Winterse-
mester

2013/2014,
Winterse-

mester
2014/2015

Übernahme der
Ergebnisse in

universitäre Lehr-
veranstaltungen

Die Wissensweitergabe
als Multiplikator, Basis für
neue Mitarbeiter und Ar-

beiten

Aktualität der
Lehrveran-
staltungen

Sommerse-
mester 2012

Vortrag /
Demonstration

Verbreitung der Zwi-
schenergebnisse, Evalu-

ation des Konzepts

Automation
Symposium

2012
21.02.2012

Vortrag /
Demonstration

Verbreitung der Zwi-
schenergebnisse bei

ZVEI-Mitgliedern

ZVEI Herbst-
sitzung 03.09.2013

Vortrag /
Demonstration/

Diskussion

Einzelworkshops mit
Unternehmen

Unternehmen
Projektaus-

schuss

01.08.2012,
10.10.2012,
03.09.2013,
01.10.2013,
08.10.2013,
10.10.2013,
24.01.2014,
05.02.2014,
30.09.2014

Vortrag /
Demonstration/
Veröffentlichung

Verbreitung der
Zwischenergebnisse,

Evaluation des Konzepts
IFAC World 29.08.2014

Nach
Abschluss

Abschlussveran-
staltung

Anfertigen eines schriftli-
chen Berichts mit den

Forschungsergebnissen
für PA und AiF, Präsenta-
tion der Ergebnisse ge-

genüber PA

AiF, PA-Sit-
zung 11.11.2014

2 Lösungsweg zur Erreichung des Forschungsziels

54

der Projekt-
laufzeit

Vortrag/
Demonstration

Verbreitung der
Ergebnisse

SPS IPC Dri-
ves

25.11.-
27.11.2014

Leitfaden und
Editor

Verbreitung der
Ergebnisse Website 12.2014

Vortrag/
Schulung

Verbreitung der
Ergebnisse

Automation
Symposium

und Schulung

05.02.2015/
06.02.2015

Veröffentlichung Verbreitung der
Ergebnisse

Verteiler des
ZVEI 02.2015

Workshop mit 10
Vertretern von

KMU des
Maschinen-/
Anlagenbaus

Verbreitung der Projekt-
ergebnisse, Evaluation

des Konzepts

Unternehmen
Projektaus-

schuss
13.10.2014

Dissertation

Dokumentation der wis-
senschaftlichen Aspekte

des
Forschungsvorhabens

 2015

3 Nutzen für KMUs

55

 Nutzen für KMUs

Die Zuverlässigkeit einer Maschine bzw. Anlage ist in Zeiten von weltweit vernetzen Produkti-
onssystemen, die nach just-in-time oder build-to-order Konzepten zeitlich voneinander abhän-
gig sind und keine Pufferzeiten für Maschinenausfälle mehr einplanen, ein sehr wichtiges Ver-
kaufskriterium. Daher bietet die nachweisbare Zuverlässigkeit von Maschinen und Anlagen bei
gleichzeitig nur sehr geringen Mehrkosten für einen automatisierten Testprozess ein klares
Differenzierungsmerkmal und sichert besonders die Wettbewerbsfähigkeit kleiner und mittel-
ständischer Maschinen- und Anlagenbauer.

Steuerungssoftware wird entweder direkt vom Maschinen- und Anlagenbauer entwickelt und
getestet oder von einem Dienstleister. Der Maschinen- und Anlagenbau ist in Deutschland
traditionell mittelständisch geprägt (wie auch im projektbegleiteten Ausschuss vertreten).
Dienstleister in diesem Bereich sind in der Regel kleine Unternehmen. Sowohl Maschinen-
und Anlagenbauer als auch Dienstleister sind einem hohen Kosten- und Zeitdruck ausgesetzt
bei gleichzeitig hohen Qualitätsanforderungen. Durch die bessere Unterstützung systemati-
scher Software-Tests wird eine kontinuierliche Steigerung der Softwarequalität erreicht. Typi-
sche Fehler können projektübergreifend analysiert und systematisch vermieden werden.
Langfristig wird ein insgesamt steigendes Qualitätsniveau bei der Softwareentwicklung er-
reicht. Im Vergleich zum Nutzen und zur Steigerung der Wettbewerbsfähigkeit ist der aufzu-
bringende personelle Aufwand zur Anwendung der angestrebten Forschungsergebnisse als
gering zu betrachten. Durch die angestrebte erhebliche, quantifizierbare Qualitätssteigerung
der Steuerungssoftware und damit auch der gesamten Maschine bzw. Anlage bei einem
gleichzeitig nur geringen Mehraufwand für die Anwendung der Testautomatisierung wird die
Wettbewerbsfähigkeit deutscher Maschinen- und Anlagenbauer erheblich gesteigert und lang-
fristig gesichert.

Neben der Verbesserung der Steuerungssoftware können Unternehmen die angestrebten For-
schungsergebnisse direkt in Form eines Produkts umsetzen. Für den Bereich der Automati-
sierungstechnik lassen sich kaum Ansätze für den automatisierten Test von Steuerungssoft-
ware finden. Daher würde ein solches Produkt einen hohes Innovationspotential bieten. Neben
dem eigentlichen Produkt kann eine Vielzahl von abgestimmten Dienstleistungen angeboten
werden. Die Entwicklung eines marktfähigen Produkts kann ab sofort erfolgen. Idealerweise
durch oder in Kooperation mit Herstellern einer Programmierumgebung für Steuerungen
und/oder Komponentenherstellern. Durch die Zusammenarbeit der KMUs von Maschinen- und
Anlagenherstellern als auch Anbietern von Automatisierungslösungen innerhalb des Projekts,
konnten die Anforderungen an ein solches Produkt insbesondere während der Evaluations-
workshops ermittelt werden.

4 Zusammenfassung und Ausblick

56

 Zusammenfassung und Ausblick

In dem Projekt ZuMaTra konnte eine umfassende Vorgehensweise von der Modellierung über
die Testfallgenerierung bis hin zur automatisierten Durchführung von Testfällen entwickelt wer-
den. Durch eine Analyse im Industrieumfeld im Bereich der Fertigungstechnik konnten die we-
sentlichen Anforderungen und Randbedingungen für einen automatisierten Test von Fehler-
behandlungsroutinen ermittelt werden. Aufbauend auf den ermittelten Anforderungen wurde
ein Ansatz für die modellbasierte Generierung von Testfällen zur Überprüfung von Ausnahme-
situationen entwickelt.

Durch den modellbasierten Ansatz können aus angepassten Weg-Zeit-Diagrammen, in wel-
chen das Gutverhalten modelliert wird, mit Hilfe von in dem Projekt definierten Fehleroperato-
ren, welche realistische Fehler der Fertigungstechnik abbilden, Testfälle generiert werden.
Testtabellen, welche die einzelnen Testfälle auflisten dienen zur Ergänzung von Informationen
welche den Testfall ausführbar machen. Ein Testfall testet die Reaktion der Maschine oder
Anlage auf ein bestimmtes Fehlerszenario wie beispielsweise den Ausfall eines Endlagen-
sensors. Eine Import in Programmierumgebungen per PLCopen XML sichert die Datendurch-
gängigkeit und ermöglicht die direkt Ausführung der generierten Testfälle.

Die Evaluation mit zwei Beispielen aus der Industrie von Robert Bosch und
Harro Höfliger ergab, dass die Vorgehensweise die Anforderungen aus der Industrie für eine
effiziente Testfallgenerierung und automatisierte Testdurchführung für diskrete Prozesse voll
erfüllt. Die Nutzung des Weg-Zeit-Diagramms als Grundlage für die Testfallgenerierung erfüllt
die wesentlichen Kriterien der schnellen Erlernbarkeit und guten Anwendbarkeit bei niedrigem
Aufwand durch eine adäquate Abstraktion des Maschinen-Modells. Diese Faktoren führen
maßgeblich dazu, dass alle Voraussetzungen für eine niedrige Einführungsbarriere des An-
satzes in die Industrie gegeben sind. Der Ansatz kann wesentlich zur Erhöhung der Effizienz
bei der Qualitätssicherung bzw. zur Erhöhung der Testabdeckung beitragen. Für kontinuierli-
che Prozesse konnte der grundsätzliche Nachweis der Machbarkeit erbracht werden, ein
Nachweis bzw. eine Anpassung des Ansatzes auf die Anforderungen, die solche Prozesse mit
sich bringen, steht jedoch noch aus. Insbesondere was den Test von Reglerbausteinen an-
geht, gibt es noch Forschungsfragen, wie die Eignung von Modellen für einen Testansatz und
die Umsetzung einer Testfallgenerierung auf Basis dieser Modelle.

Auch bei der Codeanalyse konnte gezeigt werden, dass die statische Analyse wesentlich zur
Qualitätssicherung beitragen kann. Insbesondere wurden jedoch noch weitere Handlungsbe-
darfe was den Umgang mit der Komplexität beispielsweise in Form geeigneter Visualisierun-
gen, der Untersuchung von Programmiermustern betrifft aufgedeckt, die in einem Folgeprojekt
des Lehrstuhls bearbeitet werden sollen.

Eine weitere wichtige Fragestellung ergab sich aus der Untersuchung zur Testfallselektion. Da
der Projektausschuss den grundsätzlichen Einsatz der FMEA zur Testfallselektion als zu auf-
wändig eingestuft hat, wäre zu untersuchen welche Methoden und Kriterien bei einer automa-
tisierten Selektion geeignet und einsetzbar wären.

Das Software-Funktionsmuster der ZuMaTra-Vorgehensweise, umgesetzt durch einen Editor,
und die Veröffentlichung unter davon http://zumatra.ais.mw.tum.de/ ermöglicht Unternehmen
die Vorgehensweise direkt in Ihrem Unternehmen einzusetzen und zu erproben. Durch den
Workshop, bei dem die Vorgehensweise erprobt wurde, konnte außerdem gezeigt werden,
welche Anforderungen für die Unterstützung der Vorgehensweise durch Software-Engineering
Werkzeuge noch erfüllt werden müssen. Insbesondere sind hier die Datendurchgängigkeit zu
anderen Engineering-Werkzeugen und die engere Integration und Synchronisation zwischen
Testtabelle und Weg-Zeit-Diagramm hervorzuheben.

5 Anhang

57

 Anhang

 Literaturverzeichnis
[AAA+90] Arlat, J., Aguera, M., Amat, L., Crouzet, Y., Fabre, J.-C., Laprie, J.-C., Martins, E.,

Powell, D.: Fault injection for dependability validation: a methodology and some ap-
plications, IEEE Trans. Softw. Eng., Vol. 16, Nr. 2, S. 166-182, 1990

[ArCr10] Arlat, J., Crouzet, Y.: Physical Fault Models and Fault Tolerance, Models in Hard-
ware Testing, Frontiers in Electronic Testing, Springer Netherlands, Vol. 43, S. 217-
255, 2010

[AHM+08] Ayewah, N., Hovemeyer, D., Morgenthaler, J.D., Penix, J., Pugh W.: Using Static
Analysis to Find Bugs, IEEE Softw., Vol. 25, Nr. 5, S. 22–29, 2008

[ALR+04] Avizienis, A., Laprie, J.-C., Randell, B., Landwehr C.: Basic Concepts and Taxonomy
of Dependable and Secure Computing, IEEE Transactions on Dependable and Se-
cure Computing, Vol. 1, Nr. 1, S. 11-33, 2004

[APR+13] Angerer, F., Prähofer, H., Ramler, R., Grillenberger, F.: Points-to analysis of IEC
61131-3 programs: Implementation and application, in IEEE Int. Conf. Emerg. Tech-
nol. Fact. Autom., S. 1–8, 2013

[ArBi07] Artho, C., Biere, A.: Combined Static and Dynamic Analysis, Electron. Notes Theor.
Comput. Sci., Vol. 131, S. 3-14, 2005

[AVF+01] Aidemark, J., Vinter, J., Folkesson, P., Karlsson, J.: GOOFI: generic object-oriented
fault injection tool, Proc. Int. Conf. on Dependable Syst. and Networks, IEEE Com-
put. Soc., S. 83-88, 2001

[BGG+05] Baraza, J.C., Gracia, J., Gil, D., Gil, P.J.: Improvement of fault injection techniques
based on VHDL code modification, 10th IEEE Int. High-Level Design Validation and
Test Workshop, IEEE, S. 19-26, 2005

[CuRo05] Cunning, S., Rozenblit, J.: Automating test generation for discrete event oriented
embedded systems, Springer, 2005

[CMS98] Carreira, J., Madeira, H., Silva, J.G.: Xception: Software Fault Injection and Monitor-
ing in Processor Functional Units, Dependable Computing and Fault Tolerant Sys-
tems 10, S. 245-266, 1998

[EKF+09] Ebenhofer, G., Kerbleder, G., Fritsche, J., Strasser, T.: Fokus auf Online-Monitoring
und Debugging, Computer & Automation, 12 Nov. 2009

[EmNi08] Emanuelsson, P., Nilsson, U.: A Comparative Study of Industrial Static Analysis
Tools, Electron. Notes Theor. Comput. Sci., Vol. 217, S. 5–21, 2008.

[FB05] Frey, G., Baniy, M.: Systematisches Re-Engineering bestehender Steuerungspro-
gramme auf der Basis formaler Beschreibung. SPS/IPC/Drives, Nürnberg, Nov.
2005

[HKV+11] Hametner, R., Kormann, B., Vogel-Heuser, B., Winkler, D., Zoitl, A.: Test case gen-
eration approach for industrial automation systems, The 5th International Confer-
ence on Automation, Robotics and Applications, S. 57-62, Dec. 2011

[HTI97] Hsueh, M.-C., Tsai, T.K., Iyer, R.K.: Fault Injection Techniques and Tool, Computer,
Vol. 30, Nr. 4, S. 75-82, Apr. 1997

[HuFr06] Hussain, T., Frey, G.: UML-based Development Process for IEC 61499 with Auto-
matic Test-case Generation, IEEE Conference on Emerging Technologies and Fac-
tory Automation, 2006. ETFA'06, S. 1277-1284, 2006

[HWÖ+10] Hametner, R., Winkler, D., Östreicher, T., Biffl, S., Zoitl, A.: The Adaptation of Test-
Driven Software Processes to Industrial Automation Engineering, IEEE International
Conference on Industrial Informatics (INDIN), S. 921-927, 2010

[IEC03] IEC: International Electrical Commission, IEC 61131 Programmable Controllers -
Part 3: Programming Languages, 2003.

5 Anhang

58

[Jo78] Johnson, S.C.: Lint, a C Program Checker, Bell Laboratories, 1978

[KCJ11] Kumar, B., Czybik, B., Jasperneite, J.: Model based TTCN-3 testing of industrial au-
tomation systems — First results, IEEE Conference on Emerging Technologies and
Factory Automation, IEEE, S.1-4, 2011

[KHC+99] Kim, Y., Hong, H., Cho, S., Bae, D. Cha S.: Test Cases Generation from UML State
Diagrams, IEE Proceedings - Software, Vol. 146, No. 4, S. 187-192, Aug. 1999

[KHD08] Krause, J., Herrmann, A., Diedrich, C.: Test case generation from formal system
specifications based on UML State Machines, atp international, 2008

[KoVo11] Kormann, B., Vogel-Heuser, B.: Automated Test Case Generation Approach for PLC
Control Software Exception Handling using Fault Injection, IECON 2011 - 37th An-
nual Conf. of the IEEE Ind. Electronics Soc., IEEE, S. 365-372, 2011

[KTV12] Kormann, B., Tikhonov, D., Vogel-Heuser, B.: Automated PLC Software Testing us-
ing adapted UML Sequence Diagrams, 14th IFAC Symposium of Information Control
Problems in Manufacturing, Bucharest, Romania, S. 1615-1621, 2012

[LD09] logi.DIAC: Test Driven Automation und Condition Monitoring in der Systemumge-
bung logi.cals, 2009

[Mo00] Montenegro, S.: Fehlertoleranz und Sicherheit, Workshop "Software-Entwurf für Kfz-
Steuergeräte und komplexe eingebettete Systeme", Erfurt, 24. / 25., Okt., 2000

[OM09] On-the-fly-Migration und Sofort-Inbetriebnahme von automatisierten Systemen
(OMSIS), http://www.vdivde-it.de, abgerufen 2009

[Ot08] Otto, A.: Der Weg zum sicheren Funktionsbaustein, SPS-MAGAZIN SPSS, 2008

[PAC+12] Powell, D., Arlat, J., Chu, H.N., Ingrand, F., Killijian, M.: Testing the Input Timing
Robustness of Real-Time Control Software for Autonomous Systems, 9th European
Dependable Computing Conf., IEEE, S. 73-83, May 2012

[Ru07] Russ, M.: Virtueller Funktions-Prüfstand für softwareintensive mechatronische Pro-
dukte, Dissertation Technische Universität München, Sierke Verlag, 2007,

[SCW+11] Sung, A., Choi, B., Wong, W.E., Debroy, V.: Mutant generation for embedded sys-
tems using kernel-based software and hardware fault simulation, Inform. and Soft-
ware Technology, Elsevier B.V., Vol. 53, Nr. 10, S. 1153-1164, Oct. 2011

[StEr08] Stetter, R., Erben, M.: Automatisches Testen bei SPS-Steuerungssoftware, atp-Spe-
cial Steuerungstechnik aktuell, 2008

[SEK+09] Seitz, M., Ehret, V., Kiefer, M., Ziegler, A., Kruschitz, E., Usselmann, E.: Automati-
sches Testen von Automatisierungssystemen, http://www.automatisierungs-re-
gion.de, 2009

[SKV00] Schludermann, H., Kirchmair, T., Vorderwinkler, M.: SOFT-COMMISSIONING:
HARDWARE-IN-THE-LOOP-BASED VERIFICATION OF CONTROLLER SOFT-
WARE, Proc. of the 2000 Winter Simulation Conf., S. 893-899, 2000

[SlVu05] Schlingloff, B.-H., Vulinovic, S.: Zuverlässigkeitsprüfung eingebetteter Steuergeräte
mit modellgetriebener Fehlerinjektion. Simulations- und Testmethoden für Software
in Fahr, Berlin, 2005

[SVE+10] Svenningsson, R., Vinter, J., Eriksson, H., Törngren, M.: MODIFI: a MODel-imple-
mented fault injection tool, Computer Safety, Reliability, and Security, Lecture Notes
in Computer Science, Vol. 6351, S.210 – 222, 2010

[Ta14]* Tanz, S.: Konzeption und Implementierung eines Ansatzes für die Codeanalyse von
IEC 61131-3 Funktionsblockdiagrammen. Bachelorarbeit am Lehrstuhl für Automa-
tisierung und Informationssysteme, Technische Universität München, 2014.

[TeCom06]* Testfallcompiler für den Funktionstest eingebetteter Software. Gefördert aus Haus-
haltsmitteln des BMWi über die AiF (AiF-FV-Nr. 13660 N/1), 2004-2006, geleitet von
AIS

5 Anhang

59

[TTCN3] TTCN3: ETSI ES 201 873-6 V3.2.1, Feb. 2007

[VBR+07] Vinterl, J., Bromander, L., Raistrick, P., Edlerl, H.: FISCADE - A Fault Injection Tool
for SCADE Models, 3rd Inst. of Eng. and Technology Conf. on IET, S. 1-9, 2007

[YRL+03] Yuste, P., Ruiz, J.C., Lemus, L., Gil, P.: Non-intrusive Software-Implemented Fault
Injection, Dependable Computing, Springer Berlin Heidelberg, S. 23-38, 2003

[ZAV04] Ziade, H., Ayoubi, R., Velazco, R.: A Survey on Fault Injection Techniques, The Int.
Arab J. of Inform. Technology, Vol. 1, Nr. 2, S. 171-186

* Veröffentlichungen von Mitarbeitern der Forschungsstelle

 Abbildungsverzeichnis
Abbildung 1: Struktur des projektbegleitenden Ausschusses ... 4
Abbildung 2: Projektplan (Laufzeit des Projektes 01.01.2012 – 30.09.2014) 7
Abbildung 3: Teilnehmer der Umfrage ... 8
Abbildung 4: Testort .. 9
Abbildung 5: Tests nach Entwicklungsphase ... 9
Abbildung 6: Bewertung der Möglichkeit zur manuellen und iterativen Verfeinerung der Tests.
 .. 9
Abbildung 7: Häufigkeit der Softwareänderungen und Bewertung des Aufwands für die daraus
resultierende Verwaltung ..10
Abbildung 8: Bedeutung der Dokumentation ..10
Abbildung 9: Relevanz der Simulation des Bedienerverhaltens und des Werkstücks10
Abbildung 10: Testziel ..11
Abbildung 11: Informationsquellen zur Testfallgenerierung ..11
Abbildung 12: Lokalisierung typischer Fehlerarten ...12
Abbildung 13: Informationen der Werkzeuge für die Komponentenbeschreibung13
Abbildung 14: Fehlerbehandlung von Steuerungssoftware ...14
Abbildung 15: Fehler die von der Steuerungssoftware behandelt werden15
Abbildung 16: Fehlererkennungsmechanismen ..16
Abbildung 17: Fehlerbehandlung ..17
Abbildung 18: Grundsätzliche Vorgehensweise bei der statischen Codeanalyse von ST-Code
 ...23
Abbildung 19: Verschiedene Darstellungsweisen des Codes ...24
Abbildung 20: ZuMaTra-Vorgehensweise ...25
Abbildung 21: Das Weg-Zeit-Diagramm mit den Modellierungselementen26
Abbildung 22: Testtabelle zur Vervollständigung der Testfälle ..31
Abbildung 23: Beispiel für eine FMEA (ausführlichere Beschreibung siehe Anhang CD: FMEA
Leitfaden) ...33
Abbildung 24: Aufbau der Testfälle (links) und semi-automatische Ausführung der Testfälle
(rechts). ..34
Abbildung 25: Dokumentation der Testfälle ..35
Abbildung 26: Überblick über das ZuMaTra-Plugin ...36
Abbildung 27: Übersicht ZuMaTra-Plugin ...37
Abbildung 28: PLCopen XML-Import (CODESYS-/TwinCAT3-Format) in das ZuMaTra-PlugIn
 ...38
Abbildung 29: Regel 1 als Beispiel für die Regeln im ZuMaTra-PlugIn40
Abbildung 30: Anwendungsbeispiel eines kontinuierlichen Prozesses41
Abbildung 31: Testfälle für den Test von Antriebsfehlern ..43
Abbildung 32: Modellierung der Soll-Position des Tänzers ...44
Abbildung 33: Trainingsstation Bosch ...45
Abbildung 34: Verbesserung der Modellierung im Weg-Zeit-Diagramm47
Abbildung 35: Parallele Ansicht Tabelle und Modellierung ...48
Abbildung 36: Bewertung des ZuMaTra-Ansatzes im Vergleich zur aktuellen Vorgehensweisen
- 1: voll erfüllt, 6: überhaupt nicht erfüllt ..49

5 Anhang

60

Abbildung 37: Evaluierung des ZuMaTra-Ansatzes - 1: voll erfüllt, 6: überhaupt nicht erfüllt 50
Abbildung 38: Metamodell des Weg-Zeit-Diagramms ...60

 Tabellenverzeichnis
Tabelle 1: Vergleich und Bewertung der existierenden Ansätze ...21
Tabelle 2: Elemente des Weg-Zeit-Diagrammes zur Beschreibung des Gut-Verhaltens.26
Tabelle 3: Fehleroperatoren für die Testfallgenerierung. ..28
Tabelle 4: Maßnahmen zum Ergebnistransfer ..53

 Anhang A

Profile Diagram ZuMaTra [Timing Sequence Diagram]

≪Metaclass≫
StateInvariant

≪Metaclass≫
Constraint

≪stereotype≫
sensorValue

+invariant1

{required}

≪Metaclass≫
IntervalConstraint

≪Metaclass≫
DurationConstraint

≪Metaclass≫
DurationInterval

+specification1
≪Metaclass≫

Duration

≪Metaclass≫
ValueSpecification

≪Metaclass≫
Interval

≪Metaclass≫
OpaqueExpression

-
min

+max

+min

≪Metaclass≫
Lifeline

+covered
1

*
+coveredBy

≪stereotype≫
ControlValueLifeline

+covered*

≪enum≫
MessageSort

asynchAction
synchAction
asynchSignal
synchMethod
asynchMethod
And-Message

≪Metaclass≫
Message

≪Metaclass≫
OccurenceSpecification

-enclosingInteraction
0..1

≪Metaclass≫
Interaction Fragment

* +fragment

1
+interaction

+lifeline
*

≪Metaclass≫
Gate

0..1

≪Metaclass≫
MessageEnd

* +formalGate

≪Metaclass≫
Interaction

1 -interaction

* +message

≪Metaclass≫
NamedElement

≪stereotype≫
IECMessage

≪stereotype≫
MultiMessage

[Message]

0..1 +message

0..1
+sendEvent

0..1

+receiveEvent
0..1

0..1

0..1

Kind : MessageSort

+message

-max

TimeLinePoint :
TimeLinePointElement
Variable : String
VisibleName : String
Value :
elementaryTypes

Type :
elementaryTypes

Type : elementaryTypes
TimeUnit : String

≪enum≫
elementaryTypes

BOOL
BYTE
WORD
DWORD
...

≪stereotype≫
SensorValueLifeline

≪stereotype≫
Location

≪stereotype≫
TimeLinePointElement

loc : Location
Type : PointType
X-Position : INT

xPos : INT
t : TIME

≪enum≫
PointType

Primary
Derived
Boundary

Abbildung 38: Metamodell des Weg-Zeit-Diagramms

5 Anhang

61

 Verzeichnis Anhang CD
Auf der CD befinden sich folgende Folien und Materialien

Material und Leitfäden

 ZuMaTra Leitfaden Gesamt
 ZuMaTra Leitfaden Folien
 Aufgabenstellung Workshop Bosch
 Zusatzmaterial Workshop Bosch

Evaluation

 Fragebogen ZuMaTra

Veröffentlichungen

 Automation Symposium 2012: Testen in der Automatisierungstechnik
 SPS IPC Drives: Modellbasierter Fehlerinjektions-Applikationstest für SPS-Programme

basierend auf dem CODESYS Test Manager
 Poster SPS IPC Drives

Danksagung

Diese Veröffentlichung entstand im Rahmen des IGF-Pro-
jekts Steigerung der Zuverlässigkeit von Maschinen und An-
lagen durch automatisiertes Testen von Fehlerbehand-
lungsroutinen in der Steuerungssoftware (ZuMaTra). Das
IGF-Vorhaben 16906 N der Forschungsvereinigung
Elektrotechnik beim ZVEI e.V. wurde über die AiF im
Rahmen des Programms zur Förderung der Industriellen
Gemeinschaftsforschung (IGF) vom Bundesministerium für

Wirtschaft und Technologie aufgrund eines Beschlusses des Deutschen Bundestages
gefördert.

