Schlussbericht

zu dem IGF-Vorhaben

Steigerung der Zuverlassigkeit von Maschinen und Anlagen durch automatisiertes
Testen von Fehlerbehandlungsroutinen in der Steuerungssoftware (ZuMaTra)

der Forschungsstelle

Lehrstuhl fir Automatisierung und Informationssysteme, Technische Universitat Minchen

Das IGF-Vorhaben 16906 N der Forschungsvereinigung Elektrotechnik beim ZVEl e. V.
wurde Uber die

=

im Rahmen des Programms zur Forderung der Industriellen Gemeinschaftsforschung (IGF)
vom

% Bundesministerium
4 & fiir Wirtschaft
und Energie

aufgrund eines Beschlusses des Deutschen Bundestages geférdert.

Garching 30.01.2015 Prof. Dr.-Ing. Birgit Vogel-Heuser

Ort, Datum Name und Unterschrift des/der Projektleiter(s)
an der/den Forschungsstelle(n)

Steigerung der Zuverlassigkeit von Maschinen und
Anlagen durch automatisiertes Testen von Fehler-
behandlungsroutinen in der Steuerungssoftware (ZuMaTra)

Kurzfassung:

Die Zuverlassigkeit von Maschinen wird wesentlich von deren Steuerungssoftware bestimmt,
da diese Ausnahmesituationen, die z.B. in Folge von Sensor-/Aktorausfallen eintreten konnen,
behandelt. Die fehlerbehandelnden Softwareanteile und insbesondere Anteile zur Erkennung
von Fehlern bilden dabei einen Grofdteil der Steuerungssoftware, werden jedoch aufgrund
mangelnder Zeit bzw. fehlender Werkzeuge und Verfahren oft nur unzureichend getestet. Ob
diese fiir die Zuverlassigkeit der Maschine oder Anlage notwendigen Funktionen korrekt funk-
tionieren, wird dann erst bei Eintritt der jeweiligen Ausnahmesituationen im laufenden Betrieb
festgestellt. Um hohe Ausfallkosten und Schaden infolge fehlerhafter Ausnahmebehandlungen
zu vermeiden, ist daher ein Funktionsnachweis bereits vor oder wahrend der Inbetriebnahme
anzustreben. Eine Losung hierfur ist ein Verfahren, welches die notwendigen Testfalle zur
Uberpriifung der Ausnahmebehandlungen automatisiert erzeugt. Ziel des Projekts war daher
die Erforschung eines Verfahrens, welches mit minimalem Engineering-Aufwand und maxima-
lem Automatisierungsgrad eine effektive Uberpriifung der notwendigen Ausnahmebehand-
lungsroutinen in der Steuerungssoftware ermdglicht. Um das Verhalten des Steuerungscodes
auf Sensor-/Aktorausfalle testen zu kdnnen, wurde ein neuer Ansatz flr die Fehlerinjektion in
den Steuerungscode entwickelt und zusammen mit existierenden Techniken zur automati-
schen Generierung und Ausflihrung von Testfallen auf die Software-Entwicklung in der Ferti-
gungstechnik angewandt. Fehlerinjektion wird im Projekt definiert als das absichtliche Herbei-
fuhren eines Fehlers in einem System, um dessen Reaktion darauf auszuwerten. Bislang exis-
tierten im Umfeld der Software-Entwicklung flir Speicherprogrammierbare Steuerungen (SPS)
nur unzureichende Methoden der Fehlerinjektion.

Um den Aufwand der Testerstellung zu minimieren wurde ein modellbasierter Ansatz gewahit.
Nach einer Anforderungsanalyse wurde das Format eines Weg-Zeit-Diagramms als Basis fir
den Ansatz gewahlt, fir die Modellierung von fertigungstechnischen Anlagen weiterentwickelt
und fur die Testfallgenerierung optimiert. Basierend auf der Weg-Zeit-Diagramm-Notation
wurde ein Algorithmus entwickelt, der die wichtigsten Fehlerszenarien in der Fertigungstechnik
durch Manipulation von Sensoren abdeckt und eine Testausfuihrung durch software-implemen-
tierte Fehlerinjektion fir SPSen mdglich macht. Die Ergebnisse der einzelnen Testlaufe dienen
zugleich als Dokumentation und Nachweis der korrekten Funktion der Software. Der Ansatz
fur die Testfallgenerierung und —automatisierung konnte innerhalb eines Workshops mit Hilfe
eines Funktionsmusters in Form eines Editors und Testfallgenerierungsalgorithmus mit den
Mitgliedern des Projektausschusses durchgeflhrt und evaluiert werden. Dementsprechend
konnte nicht nur der Nachweis der Machbarkeit, sondern auch der Nachweis der Anwendbar-
keit des Ansatzes fir die Doméane der Fertigungstechnik erbracht werden. Das Forschungsziel
wurde nachweislich erreicht.

Berichtsumfang: 65 S., 38 Abb., 4 Tab., 41 Lit.

Forschungsvereinigung: ZVEl - Zentralverband Elektrotechnik- und Elektronik-
industrie e. V

Forschungsstelle: Lehrstuhl fur Automatisierung und Informationssysteme,
Technische Universitat Minchen

Leiterin: Prof. Dr.-Ing. Birgit Vogel-Heuser

Bearbeiterin und Verfasserin: Susanne Rosch

Inhaltsverzeichnis

1

2

] LT3 0 g T 1
1.1 Problemstellung / Motivation ... 1
1.2 Projekt ZUMATTAoooiiiiiiii e 2

1.2.1 ProjEKIZIEIEovveeie e 2

1.2.2 Innovativer Beitrag der angestrebten Forschungsergebnisse............................ 3

1.2.3 Zusammensetzung des Projektbegleitenden Ausschusses (PA)...................... 3

1.2.4 ArbeitSpakete (AP) e e s 4

1.2.5 Arbeitsdiagramimo 7

1.2.6 Notwendigkeit und Angemessenheit der geleisteten Arbeitcccceee. 7

Losungsweg zur Erreichung des ForschungSzielS.............uvviviiiiiiiiiiiiii, 8
2.1 Ist-Analyse im industriellen Umfeld zur Anforderungsverfeinerung.......................... 8

2.1.1 Auswertung einer Umfrage mit Teilnehmern aus der Industriecccueee. 8

2.1.2 Analyse von Anwendungsbeispielen aus der Industrie.................ccccoiiiiinnnes 13

21.3 Untersuchung von Codier- bzw. Ausfiihrungsrichtlinien.................cccccccooie 17
2.2 Vorrecherche Stand der Forschung und Entwicklungccooiiiiiiiiiiiiiiiiies 18

2.21 Statische CodeanalySe..........coouii i 18

222 =T 0] [T T T=Y ST IS 19

2.2.3 Testen in der Automatisierungstechnik............ccccoooiiiiiiiiiii e 20
2.3 Verfahren zur statischen Codeanalyse................coiiiii s 22
2.4 Vorgehensweise fur den Test von Fehlerbehandlungsroutinenc.o........ 25

241 Modellierungsverfahren flir Komponenten (Abbildung 20, Nr. 1) ..cccccooeeeeenees 26

242 Automatische Testfallgenerierung (Abbildung 20, Nr. 2)..........ccoiiiiiiiiiiiiiees 28

2.4.3 Automatisches Echtzeit-Testfallausflihrungsverfahren (Abbildung 20, Nr. 3)...33
2.5 Software-Funktionsmuster als Basis der Evaluierung..............cooooiiiiiiiiiiiiiiiinenens 35

2.5.1 Konzeption und Implementierung des Funktionsmustersccccceevvieeenennns 35

252 Identifikation und Beschreibung der Werkzeugfunktionenccccccceee.. 35

253 Aufbau des EdItOrs...... ..o 36

254 Codeanalyse im EditOr.........cccooiiiiiiiiii e 37

255 Das Weg-Zeit-Diagramm, die Testfallgenerierung und Testtabelle im Editor...38

256 Ty 4111 w240 g o P 38
2.6 Evaluierung der KONZepteooooviiiiiiiiiiii s 38

2.6.1 Evaluierung der CodeanalySecoooiiiiiiiiieiiiiiiiee et 39

2.6.2 Evaluierung der Vorgehensweise fir den Test von Fehlerbehandlungsroutinen

an einem Anwendungsbeispiel mit kontinuierlichen Prozessencccccoovviviiiiieciinnnnnn. 40

2.6.3 Evaluierung der Vorgehensweise fir den Test von Fehlerbehandlungsroutinen

in einem Workshop an einem Anwendungsbeispiel mit diskreten Prozessen 44

2.6.4 Beantwortung eines Fragebogens zur Bewertung des Gesamtkonzepts......... 48

2.6.5 Zusammenfassung der Evaluierung..........ccccouuviiiiiiiii e 51

2.7 Ergebnistransfer in die Wirtschaft..............cc s 52
3 NULZEN FUF KIMUS ..ot e e e e e et e e e e e e et te e e e e e e e e ennnees 55
4 Zusammenfassung UNd AUSDIICKcoiiiiiiiiiiii e 56
LS 4| =1 o T PO U ST 57
5.1 LiteraturverzeiChnis e 57
5.2 AbbildungSVerzeiChNisc..uuiiiii e 59
5.3 TabellenverzeiChnis. e 60
L N o o F= o o NSO 60
5.5 Verzeichnis ANhang CD ...t e e e e e e e e eeeeas 61

1 Einleitung

1 Einleitung

1.1 Problemstellung / Motivation

Die Software nimmt im Maschinen- und Anlagenbau eine zentrale Rolle ein und stellt einen
wesentlichen Teil der Funktionserbringung dar. In zunehmendem MalRe werden mehrere ver-
teilte Softwarekomponenten zur Umsetzung einer Funktion bendtigt, was zu einer steigenden
Komplexitat flhrt. Die Beherrschung der Komplexitat dieser Funktionsiibernahme der Soft-
ware innerhalb des Gesamtsystems erfordert die Integration der softwarerelevanten Aspekte
wahrend der Systemplanungs- und entwicklungsphase. In [Mo00] wird gezeigt, dass Ausfalle
in fehlertoleranten Systemen lediglich in 8 % aller Falle auf Hardwareschaden, hingegen 65 %
auf Softwarefehler zurtickzuflihren sind.

Die Entwicklung qualitativ hochwertiger Software ist heute mangels Werkzeugen zur durch-
gangigen Entwicklung enorm aufwendig, erfordert viel Zeit und zieht dementsprechend hohe
Kosten nach sich. Durch den immateriellen Charakter von Steuerungssoftware und die nur
schwer sichtbare Entwicklungskomplexitat der Software fehlt haufig die Bereitschaft seitens
des Kunden, die zur Gewahrleistung der Softwarequalitat notwendigen Anstrengungen im En-
gineering, zu bezahlen, wodurch der Kostendruck bei den Herstellern der Maschinen und An-
lagen steigt. Nichtsdestotrotz sind die Kunden nicht bereit Einbul’en was die Zuverlassigkeit
der Maschinen und Anlagen betrifft hinzunehmen.

Zuverlassigkeit setzt sich u.a. aus den Aspekten Reife, Fehlertoleranz und Wiederherstellbar-
keit zusammen (s. ISO/IEC 9126 bzw. DIN 66272). Diese Aspekte sind dabei wie folgt defi-
niert:

¢ Reife: Geringe Versagenshaufigkeit durch Fehlerzustande

o Fehlertoleranz: Fahigkeit, ein spezifiziertes Leistungsniveau bei Softwarefehlern oder
Nichteinhaltung ihrer spezifizierten Schnittstelle einzuhalten,

o Wiederherstellbarkeit: Fahigkeit, bei einem Versagen das Leistungsniveau wiederher-
zustellen und die direkt betroffenen Daten wiederzugewinnen.

Die Zuverlassigkeit von Maschinen und Anlagen wird wesentlich von deren Steuerungssoft-
ware bestimmt, da diese Ausnahmesituationen, die z.B. in Folge von Sensor-/Aktorausfallen
eintreten konnen, behandelt. Die fehlerbehandelnden Softwareanteile bilden einen Grofiteil
der Steuerungssoftware, werden jedoch aufgrund mangelnder Zeit bzw. fehlender Werkzeuge
und Verfahren oft nur unzureichend getestet. Fehlerbehandlungsroutinen werden zwar mit ho-
hem Aufwand erstellt, jedoch oft nicht explizit getestet, da die ,Gut-Funktion“ der Maschine/An-
lage den Kern der Abnahme durch den Kunden darstellt. Die ,Gut-Funktionen® werden daher
kontinuierlich im Rahmen der Inbetriebnahme und in Vorbereitung eines Abnahmetests ge-
pruft. Dartber hinaus bleibt in der Inbetriebnahme oft nicht die Zeit, Fehlerbehandlungsrouti-
nen im notwendigen Umfang zu testen. Zur Sicherstellung der Systemzuverlassigkeit miissten
jedoch auch diese Softwareanteile getestet werden, die im Falle eines moglichen Hardware-
Ausfalls greifen sollten. Aufgrund des insgesamt vorherrschenden Kostendrucks, insbeson-
dere fUr die Softwareanteile von Maschinen und Anlagen, ist es jedoch nicht méglich, erwei-
terte manuelle Testverfahren einzusetzen. Umfangreichere Tests kénnen nur dann kostende-
ckend durchgeflihrt werden, wenn diese im Wesentlichen automatisch ablaufen kénnen. Ob
diese fir die Zuverlassigkeit der Maschine oder Anlage notwendigen Funktionen korrekt funk-
tionieren, wird dann erst bei Eintritt der jeweiligen Ausnahmesituationen im laufenden Betrieb
festgestellt. Um hohe Ausfallkosten und Schaden infolge fehlerhafter Ausnahmebehandlungen
zu vermeiden, ist jedoch ein Funktionsnachweis bereits vor oder wahrend der Inbetriebnahme
anzustreben. Eine Lésung hierfiur ist ein Verfahren, welches die notwendigen Testfalle zur
Uberpriifung der Ausnahmebehandlungen automatisiert erzeugt. Die somit generierten Test-
falle mussen zur effizienten Abarbeitung in ihrer Anzahl und Komplexitat beschrankt werden.
Ziel dieses Vorhabens ist daher die Erforschung eines Verfahrens, welches mit minimalem
Engineering-Aufwand und maximalem Automatisierungsgrad eine effektive Uberpriifung der

1

1 Einleitung

notwendigen Ausnahmebehandlungsroutinen in der Steuerungssoftware ermdéglicht. Um das
Verhalten des Steuerungscodes auf Sensor-/Aktorausfalle testen zu kénnen, sollen neue An-
satze der Fehlerinjektion in den Steuerungscode entwickelt und zusammen mit existierenden
Techniken zur automatischen Generierung und Ausfiihrung von Testfallen auf die Software-
Entwicklung im Maschinen- und Anlagenbau angewendet werden. Bislang existieren im Um-
feld der Software-Entwicklung fir Speicherprogrammierbare Steuerungen (SPS) keine pas-
senden Methoden der Fehlerinjektion flr Sensor-/Aktorausfélle. Da die Zuverlassigkeit ihrer
Produkte fur klein- und mittelstandische Maschinen- und Anlagenbauer einen entscheidenden
Wettbewerbsfaktor darstellt, der heute noch notwendige zeitliche Aufwand fiir die Qualitatssi-
cherung jedoch kaum tragbar ist, soll bei diesem Projekt insbesondere die praktische Anwend-
barkeit fir KMU bertcksichtigt werden. Die Ergebnisse sollen aulRerdem Mdaglichkeiten fir
weitere Werkzeugentwicklungen schaffen, die eine langfristige Basis fUr eine Steigerung der
Zuverlassigkeit und Sicherheit von Maschinen und Anlagen bieten und somit einen Wettbe-
werbsvorteil erméglichen.

1.2 Projekt ZuMaTra

1.2.1 Projektziele

Ziel des Projekts ,Steigerung der Zuverlassigkeit von Maschinen und Anlagen durch automa-
tisiertes Testen von Fehlerbehandlungsroutinen in der Steuerungssoftware® (ZuMaTra) ist
eine in der Praxis anwendbare und wissenschaftlich fundierte Methode bereitzustellen,
wodurch eine (teil-)automatische Uberpriifung der korrekten Implementierung bzw. Funktion
der Behandlung von Ausnahmesituationen ermdglicht wird.

Um die Praxistauglichkeit des Ansatzes sicherzustellen, wurden zu Beginn des Projekts zum
einen eine ausfihrliche Anforderungsanalyse unter den Unternehmen durchgefiihrt zum an-
deren einige Anwendungsbeispiele aus den Unternehmen auf weitere Anforderungen und
Randbedingungen untersucht. DarlGiber hinaus wurden bestehende Ansatze auf deren An-
wendbarkeit hin Gberprift.

Um die Herausforderungen im Kontext einer Uberpriifung von Fehlerbehandlungsroutinen der
Steuerungssoftware im Maschinen-/Anlagenbau zu beherrschen, wurden im Projekt zentrale,
daflr notwendige Aspekte, wie die modellbasierte Testfallgenerierung und die statische Code-
analyse, in einem Ansatz vereint.

Dazu sollte auf Basis der ermittelten Anforderungen ein Modellierungsansatz entwickelt wer-
den, der eine automatische Testfallgenerierung basierend auf ebenfalls ermittelten und im Pro-
jekt definierten Fehleroperatoren ermdglicht. Diese Fehleroperatoren sind verknlpft mit Mus-
tern in der Verhaltensmodellierung der Software einer Maschine (z.B. steigende Flanke eines
binaren Sensors) und erlauben so die Identifikation von potenziellen Fehlerszenarien, die
durch einen Testfall zu Uberpriifen sind. Darauf aufbauend wurde ein Verfahren zur automati-
schen Generierung sowie Ausfiihrung identifizierter Testfalle entwickelt.

Die bei der Anforderungsermittiung aufgedeckten Randbedingungen sollten aulerdem die
Uberprufung von Fehlerbehandlungen durch statische Codeanalyse ermdéglichen.

In dem hier vorgestellten Ansatz ist die Uberpriifung von IEC 61131-3 Steuerungssoftware
[IECO03] das grundsatzliche Anwendungsfeld. Die untersuchte Ausflhrung der vorher erstellten
Testfalle muss in Interaktion mit der Steuerung stehen und unter Echtzeitbedingungen abge-
arbeitet werden. Um die Fehlerbehandlungsroutinen des Steuerungscodes Uberpriifen zu kon-
nen, werden Fehler automatisch in das System injiziert. Dabei kann die Interaktion abhangig
von einem jeweiligen Einsatzszenario und der Kritikalitat der Anlage gegenilber einer realen
oder simulierten Maschine stattfinden. Um die Robustheit fehlertoleranter Systeme testen zu
kénnen, missen potentiell auftretende Hardware-Fehler (Ausnahmesituationen) in Tests er-
zwungen werden. Die aktuell existierenden Ansatze der Fehlerinjektion werden fiir das Erzeu-
gen von Speicherfehlern verwendet, um wahrend des Testdesigns beriicksichtigte Fehler zu
erzwingen. In ZuMaTra werden diese Technik in Testfallen verwendet, die beispielsweise auf

2

1 Einleitung

Fehleranalysen (bspw. FMEA [FMEQ09]) oder anderen geeigneten Notationen fliir die Anwen-
dungsbeispiele basieren.

Die Fehlerinjektion soll gegentber einer simulierten oder auch realen Anlage durchgefiihrt
werden koénnen. Je nach Art der generierten Testfélle setzen diese ahnliche oder unterschied-
liche Startzustdande des Gesamtsystems voraus.

Um das Potential des Ansatzes aufzuzeigen, wurde ein Funktionsmuster, welches sowohl die
Codeanalyse als auch der Test von Fehlerbehandlungsroutinen unterstitzt, umgesetzt. Das
Funktionsmuster konnte flir eine ausfihrliche Evaluierung der Ergebnisse dienen.

1.2.2 Innovativer Beitrag der angestrebten Forschungsergebnisse

Bislang existieren keine Ansatze oder Werkzeuge, die es erlauben die Fehlerbehandlungsrou-
tinen von Maschinen und Anlagen automatisiert und damit kostengiinstig zu testen. Der Ein-
satz der angestrebten Forschungsergebnisse ermoglicht letztendlich eine effizientere Entwick-
lung, da durch die Testautomatisierung die Effizienz bei sowohl der Testfallerstellung als auch
der Testdurchfiihrung erheblich erhoht wird. Die bislang erst wahrend des Betriebs aufgetre-
tenen Softwarefehler werden somit schon wahrend der Entwicklung erkannt und korrigiert. Die
Entwicklung eines solchen Ansatzes bietet fir kleine und mittelstdndische Maschinen- und
Anlagenbauer erstmalig die Mdglichkeit, die Steuerungssoftware ihrer Anlage auch fir Aus-
fallsituationen mit geringem Mehraufwand zu testen und damit die Zuverlassigkeit ihrer Ma-
schinen und Anlagen erheblich zu steigern. Dies hat unmittelbar zur Folge, dass die Inbetrieb-
nahmezeiten verkirzt und der Zuverlassigkeitsnachweise strukturiert dokumentiert werden
kann. Anbieter von Software-Werkzeugen, insbesondere Hersteller von Programmierumge-
bungen flr Steuerungen, kénnen die erforschten Verfahren und Algorithmen fiir die Entwick-
lung innovativer Produkte heranziehen.

Daruber hinaus kénnen Dienstleister und Ingenieurburos (gréRtenteils kleine Unternehmen),
die sich auf die Erstellung von Steuerungssoftware spezialisiert haben, ihr Angebot erweitern
bzw. die Qualitat der angebotenen Dienstleistungen erheblich steigern. Hierdurch kdnnen sie
sich gegenulber der Konkurrenz aus Landern mit geringerem Lohnniveau deutlich absetzen.
Fir eine praxisnahe und erfolgsversprechende Umsetzung bedarf es einer Betrachtung aus
unterschiedlichen Domanen. Die Konstellation des projektbegleitenden Ausschusses (PA) aus
Unternehmen des Maschinen- und Anlagenbaus, Softwareentwicklern, Beratungsunterneh-
men im Maschinen- und Anlagenbaum, Geratetechniker und Betreiber (Geratehersteller ver-
wenden Maschinen um ihre Produkte herzustellen) stellt die Ausgangsbasis fur eine Iicken-
lose Erarbeitung praxistauglicher Ergebnisse unter Berlicksichtigung aller Anspruchsgruppen
dar.

1.2.3 Zusammensetzung des Projektbegleitenden Ausschusses (PA)

Der projektbegleitende Ausschuss (PA) setzt sich aus Unternehmen aller betreffenden An-
spruchsgruppen zusammen:

* Anbieter von Software-Werkzeugen und Beratung im Bereich Software

* Anbieter von Steuerungs-, Antriebs,- und Geratetechnik

* Unternehmen des Maschinen- und Anlagenbaus mit Steuerungsprogrammierung
* Maschinenbetreiber als Kunde der Maschinen- und Anlagenbauer

Hierbei treten die nicht KMU in unterschiedlichen Rollen auf: Festo, Phoenix Contact und
Bosch sind zum einen Anbieter von Steuerungskomponenten, produzieren diese aber auch
selbst mit eigenen Maschinen, die von einer internen Maschinenbauabteilung entwickelt wer-
den.

Der deutsche Automatisierungsmarkt wird heute im Wesentlichen durch einige wenige Her-
steller bestimmt. Insbesondere die Produkte der Firma Siemens dominieren. Jedoch konnten
in den letzten Jahren auch kleinere Unternehmen einen starken Anstieg ihrer Marktanteile

3

1 Einleitung

verzeichnen. Dies trifft insbesondere auch auf Anbieter von Steuerungskomponenten wie
bspw. Beckhoff, Phoenix Contact oder Schneider zu. Viele dieser Anbieter stitzen sich auf
das Programmiersystem CODESYS der Firma 3S-Smart-Software-Solutions. Durch die Ein-
beziehung der Firmen 3S-Smart-Software-Solutions und anderen Anbietern wie z.B. Phoenix-
Contact (die in Deutschland ebenso einen bedeutenden Marktanteil haben) wird in diesem
Projekt eine hohe Abdeckung hinsichtlich der fir Deutschland relevanten Anbieter von Pro-
grammierumgebungen fir Steuerungen erreicht.

Maschinenbetreiber

VALIDAS "

Y%

SW-Entwicklung/
Beratung

Maschinen-
Anlagenbauer |FESTO | [f]ieam.

mn«zmx ‘
ICONTACT

Schneider

FeEsTO EEZIGE
KMU

Geratetechnik (Umsatz < 125 Mio€
Abbildung 1: Struktur des projektbegleitenden Ausschusses

1.2.4 Arbeitspakete (AP)

Die Arbeitspakete wurden zur Erreichung der unter den Forschungszielen formulierten Ziel-
stellungen eingeteilt:

AP 0: Vorgehensweise und Vorrecherchen im Projekt

Durch eine ausfiihrliche Recherche und Bewertung existierender Technologien, Teilldsungen
und zu berlcksichtigender Standards wurde die Grundlage fir die weitere Ausarbeitung der
Zielstellung und der weiteren Arbeitsschritte gelegt. Bei der Bearbeitung der einzelnen Arbeits-
schritte wurde ein besonderer Fokus auf die praxisnahe Ausrichtung der Zielsetzung gelegt.
Dabei wurden in den regelmaRigen Projekttreffen die Anforderungen und spezifischen Anwen-
dungsfalle der Unternehmen im PA abgefragt und gemeinsam diskutiert. Mit dem Ziel den
Aufwand der Unternehmen (KMU im speziellen) fir an das Forschungsprojekt ankniipfende
Entwicklungen niedrig zu halten, wurden die im wissenschaftlichen Umfeld analysierten exis-
tierenden oder neu entwickelten Methoden praxisgerecht aufbereitet. Um aufbauende Ent-
wicklungen zu férdern, verbreitet die Forschungsstelle die Forschungsergebnisse praxisbezo-
gen in Veroffentlichungen.

AP _1: Modellierungsverfahren fur Komponenten und deren Ausfalle im Kontext des Steue-
rungscodes

Grundlage des AP 1 stellten die in AP 0 definierten Anforderungen und Randbedingungen dar.
Einer Untersuchung, welche Notationen bei den Unternehmen ihren Einsatz finden und fur die
Testfallgenerierung geeignet sind, ergab, dass das Weg-Zeit-Diagramm grundsatzlich geeig-
net ist. Dies wurde entsprechend weiterentwickelt und angepasst um den Anforderungen voll
zu genugen. Als Erganzung zum Weg-Zeit-Diagramm wurde die ,Failure Mode and Effects
Analysis“ (FMEA), welche eine Betrachtung der Systemkomponenten mit den ihnen zuzuord-

1 Einleitung

nenden Ausfallwahrscheinlichkeiten und Kritikalitaten ermdglicht, gewahlt. Um den Testauf-
wand zu reduzieren, kann so die Menge der zu erzeugenden Testfalle anhand dieser Para-
meter skaliert werden.

Es wurde erfolgreich ein Modellierungsansatz entwickelt.
Personaleinsatz HPA A: 6 PM
AP 2: Verfahren zur Extraktion eines sprachneutralen Kontrollflussmodells

Ziel dieses Arbeitspakets war die Erforschung eines Verfahrens welches den implizit z.B.
durch Schleifen, Spriinge und Alternativ-Entscheidungen (IF-THEN-ELSE, CASE) definierten
Kontrollfluss aus einem gegebenen Steuerungsprogramm extrahieren und in ein sprachneut-
rales Automatenmodell Uberfihren kann. Fir die Untersuchung mittels statischer Codean-
alanalyse ist die einheitliche Reprasentation der unterschiedlichen IEC 61131-3 Programmier-
sprachen eine wichtige Herausforderung. Eine einheitliche Darstellung wurde insbesondere
fur die Sprachen Strukturierter Text (ST), Ablaufsprache (AS) (sieche Anhang CD: Meilenstein
2) und aulerhalb des Projekts in einer assoziierten Bachelorarbeit flir Funktionsblockdia-
gramme (FBD) [Ta14] untersucht.

Das Verfahren konnte erfolgreich entwickelt werden.
Personaleinsatz HPA A: 5 PM; HPA B: 2 PM

AP 3: Verfahren zur statischen Code-Analyse

Ziel dieses Arbeitspakets war die Erforschung eines statischen Code-Analyseverfahrens mit
dem die in AP 0 identifizierten Regeln firr die Uberpriifung der Steuerungssoftware tberprift
werden kdnnen. Hierfir wurden einfache Templates fur die Spezifikation der Regeln und ein
Algorithmus zur Uberpriifung der spezifizierten Regeln am Kontrollfluss entwickelt.

Das Verfahren konnte erfolgreich fir die Uberpriifung von Codierrichtlinien, nicht jedoch fir
die Testfallgenerierung entwickelt werden.

Personaleinsatz HPA A: 4 PM; HPA B: 1 PM

AP 4: Automatisches Testfallgenerierungsverfahren

Ziel dieses Arbeitspakets war die Anwendung bzw. Adaption von Testfallgenerierungsverfah-
ren. Das Generierungsverfahren entspricht allen nach AP 0 definierten relevanten Situationen,
in denen ein Komponentenausfall ein alternatives Verhalten auslésen kann. Ein Testfall oder
mehrere Testfalle liefern durch deren Ausfliihrung die Mdglichkeit einer Beurteilung, ob die
Fehlererkennung und Fehlerbehandlung korrekt funktioniert.

Das automatische Testfallgenerierungsverfahren konnte erfolgreich entwickelt werden.
Personaleinsatz HPA A: 6 PM

AP 5: Automatisches Echtzeit-Testfallausfuhrungsverfahren

In dem Gesamtansatz sollen Testfalle einerseits automatisch erzeugt werden (s. AP 4) und
andererseits soll auch die Ausflihrung automatisiert werden. Dafir wurde in diesem Arbeits-
paket ein Verfahren zur automatischen Initialisierung, Ausfliihrung und Protokollierung von
Testfallen erforscht, welches in Kontext von Echtzeit-Anforderungen auf industriellen Steue-
rungen angewendet werden kann. Eine zentrale Herausforderung stellt dabei die wiederhol-
bare Herstellung notwendiger Ausgangszustande des Gesamtsystems (Maschine/Anlage und
Software) dar, um fir spatere Regressionstests Veranderungen in der Steuerungssoftware
sicher beurteilen zu kénnen.

Das automatische Echtzeit-Testfallausflihrungsverfahren konnte erfolgreich entwickelt wer-
den.

Personaleinsatz HPA A: 2 PM

AP 6: Software-Funktionsmuster als Basis der Evaluierung
5

1 Einleitung

Ziel dieses Arbeitspakets war die softwaretechnische Umsetzung der in Arbeitspaket 1 bis 5
erforschten Verfahren im Sinne eines Funktionsmusters als Grundlage fir die Evaluierung des
Gesamtansatzes. Die softwaretechnische Umsetzung berticksichtigt soweit moglich - und fir
den grundsatzlichen Funktionsnachweis des Verfahrens (s. AP 7) notwendig - geltende Stan-
dards (PLCopen XML und UML).

Das Funktionsmuster konnte erfolgreich umgesetzt werden.
Personaleinsatz HPA A: 6 PM; HPA B: 12 PM

AP 7: Evaluation des Gesamtansatzes

Im abschlieRenden Arbeitspaket wurde das im Projekt entwickelte Gesamtkonzept an einem
der Forschungseinrichtung und zwei in der Industrie vorhandenen Demonstratoren evaluiert.
Diese Demonstratoren decken die Systemklassen diskreter und hybrider Prozess ab.

Basis fir die Evaluation ist das in AP 6 erarbeitete Software-Funktionsmuster, welches die
Verfahren anwendbar und bewertbar macht.

Fragestellungen des Evaluationsprozesses sind hierbei z.B.:

e Unter welchen Randbedingungen sind die vorgeschlagenen Verfahren technisch an-
wendbar?

e Wie hoch ist der zusatzliche Aufwand fir den Maschinen-/Anlagenbauer?

e Welchen Einfluss hat die Anwendung der Lésung auf die Zuverlassigkeit der Ma-
schine/Anlage?

Die Evaluation wurde erfolgreich durchgeflihrt.
Personaleinsatz HPA A: 4 PM

AP 8: Projektsteuerung, Vorstellung von Projektergebnissen, Anfertigung von Berichten

Dieses Arbeitspaket erstreckte sich Uber die gesamte Projektlaufzeit und wurde parallel zu
allen anderen Arbeitspaketen bearbeitet. Neben den administrativen Aufgaben der Organisa-
tion und Kontrolle des Projektverlaufs wurden in diesem Arbeitspaket die Aufwendungen fir
die Vor-/Nachbereitungen von Projekttreffen mit dem Projektbeirat zusammengefasst. Die Er-
gebnisse der jeweiligen Aufgabenpakete wurden zentral organisiert und transparent an den
projektbegleitenden Ausschuss kommuniziert.

Des Weiteren wurden in diesem Arbeitspaket alle Aufgaben zum Ergebnis- und Wissenstrans-
fer an den PA und die Industrie bearbeitet. In diesen Aufgabenbereich fallen auch die Anferti-
gungen von Veroffentlichungen in Fachzeitschriften und Konferenzen, sowie die Prasentation
der Forschungsergebnisse auf Messen.

Die Vorstellung der Projektergebnisse wurde in vollem Umfang erreicht.
Personaleinsatz HPA A: 3 PM

1 Einleitung

1.2.5 Arbeitsdiagramm

S
$
& \‘L@\W@'@/\W@ O A S A A A A A A e A A A A A A%
S SIS S P S SIS SIS SIS IS TS

%

NE I

[T [

I A

813

36| 15|Summe PM

Legende 1. Wissenschafter 2. Wissenschaftler Fachinformatiker I/Ihalber Monat |

Abbildung 2: Projektplan (Laufzeit des Projektes 01.01.2012 — 30.09.2014)

1.2.6 Notwendigkeit und Angemessenheit der geleisteten Arbeit

Die in AP1 durchgeflihrten Arbeiten waren notwendig um die Grundlagen fiir ein anwendungs-
nahes und gut verstandliches Modell fiir die Testfallgenerierung zu erreichen. Die Arbeit wurde
von dem PA als angemessen bewertet (siehe Evaluation bezliglich des Modells in den Ab-
schnitten 2.6.2, 2.6.3, 2.6.4).

Die in AP2 und AP3 durchgefihrten Arbeiten waren notwendig um die in der Ist-Analyse ge-
stellten Anforderungen (siehe 2.1) an die Uberpriifung von Codierrichtlinien zu erfillen. In AP2
wurde die Extraktion von IEC 61131-3 Code in einen Kontrollfluss untersucht, in AP3 die Uber-
prifung der Regeln realisiert.

Die in AP4 und AP5 geleisteten Arbeiten waren notwendig um aufbauend auf dem in AP1
entwickelten Modellierungsansatz Testfalle entsprechend der Anforderungen (siehe 2.1) zu
generieren und auszuftihren. Die Machbarkeitsstudien (siehe 2.6.2, 2.6.3) zeigen die erfolg-
reiche Umsetzung und damit die Angemessenheit der Arbeiten.

Das in AP6 umgesetzte Funktionsmuster tragt mafligeblich zur Evaluation und damit zur Er-
gebniseinschatzung der Industrieunternehmen bei. Die Veréffentlichung des Funktionsmus-
ters auf einer Website (siehe Ergebnistransfer) zeigt die angemessene Umsetzung des Ansat-
zes und ermoglicht eine weitere Verbreitung des Ansatzes.

Die in AP7 durchgefiihrte Evaluation wurde Uber den im Antrag gestellten Anforderungen er-
fullt und nicht nur an Laboranlagen sondern auch an Maschinen des Industrieunternehmen
durchgefuhrt, womit eine deutlich bessere Ergebniseinschatzung in der Wirtschaft ermdglicht
wurde.

Die in AP8 durchgefihrten Arbeiten zur Veroffentlichung der Projektergebnisse waren fir eine
Verbreitung der Ergebnisse notwendig und wurden entsprechend den in Abschnitt 2.7 be-
schriebenen Mallnahmen umgesetzt.

2 Lésungsweg zur Erreichung des Forschungsziels

2 Lodsungsweg zur Erreichung des Forschungsziels

Im Folgenden werden die in den verschiedenen Arbeitspaketen entwickelten Konzepte und
Funktionsmuster dargestellt. In Kapitel 2.1 werden die in AP 0 untersuchten Anforderungen
fur den Einsatz der Methodik in der Industrie und in Kapitel 2.2 die Untersuchung existierender
Verfahren aufgezeigt. In Kapitel 2.3 wird das in AP 3 und 4 entwickelte Verfahren fir die stati-
sche Codeanalyse erlautert. Kapitel 2.4 umfasst die Ergebnisse der entwickelten Methode fir
die Modellierung (AP 1), Testfallgenerierung (AP 4) und Testausfihrung (AP 5). Die Umset-
zung der Methode in einem Funktionsmuster wird in Kapitel 2.5 dargelegt. Die Evaluierung
(AP 7, Kapitel 2.6) und Zusammenfassung (Kapitel 3) schlieen den Abschlussbericht ab.

2.1 Ist-Analyse im industriellen Umfeld zur Anforderungsverfeinerung

Im Folgenden werden aktuelle Vorgehensweisen anhand einer Ist-Analyse in Form eines Fra-
gebogens und einer Untersuchung von Anwendungsbeispielen aus dem industriellen Umfeld
des Projektbegleitende Ausschusses (PA) vorgestellt. Die Anwendungsbeispiele sind zum ei-
nen die Steuerungssoftware von vier Unternehmen des Projektausschusses zum anderen
zwei Codierrichtlinien aus zwei Unternehmen.

Aus der Umfrage wurden die zentralen Anforderungen an den Ansatz des Projekts ZuMaTra
abgeleitet und die Forschungsziele angepasst und verfeinert. Dabei wurden neun Mitglieder
des PAs und somit eine Stichprobe von sowohl Dienstleistern, als auch Anwendern aus der
Maschinenbauindustrie befragt.

Die Software-Anwendungsbeispiele und Codierrichtlinien wurden auf weitere Randbedingun-
gen an den Ansatz und insbesondere auf Randbedingungen fir einen automatisierten Test
und die Codeanalyse untersucht.

2.1.1 Auswertung einer Umfrage mit Teilnehmern aus der Industrie

Im Folgenden werden die Ergebnisse der Umfrage mit 8 Teilnehmern aus 7 Unternehmen
prasentiert. Die an der Umfrage teilnehmenden Unternehmen sind in der Abbildung 3 aufge-
listet:

m Hgﬁinger & BOSCH

7AVAV
VALIDAS * CONTACH FESTO
Abteilung Electronics
Abteilung Technologieentwicklung

team

Abbildung 3: Teilnehmer der Umfrage

Momentan werden 25-30% der gemessenen Zeit an den gesamten Softwareentwicklungs-
stunden flr das Testen der Steuerungssoftware aufgewendet. Daher ist es notwendig, dass
fir den zusatzlichen Test von Fehlerbehandlungsroutinen so wenig Zeit wie moglich aufge-
wendet werden muss. Folglich wurde folgende Anforderung formuliert:

A1: der Automatisierungsgrad der Testerstellung und —ausfiihrung muss méglichst hoch sein.

In den Abbildungen 4 und 5 werden die Ergebnisse des aktuellen industriellen Testumfelds
dargestellt: Wahrend alle Unternehmen direkt am Arbeitsplatz Tests durchfiihren und Gber die

8

2 Lésungsweg zur Erreichung des Forschungsziels

Halfte vor Ort, wird am Teststand nur in wenigen Fallen getestet. Besonders bei der Entwick-
lung des Prototyps, bei Implementierung und wahrend der Inbetriebnahme wird getestet, wo-
gegen Tests direkt nach der Entwicklung uniiblich sind. Dies ist vermutlich insbesondere auf
fehlende Simulationsmodelle zurtickzufihren. Der Ansatz muss also eine

A2: Durchfiihrbarkeit sowohl gegen eine Simulation als auch gegen die reale Maschine

aufweisen.
Schreibtisch
Testlabor, Teststand

vor Ort (Werk)
i i \ \ \ \ w ' Anzahl der Unternehmen

o 1 2 3 4 5 6 7

Abbildung 4: Testort

Wahrend Implementierung
Nach der Entwicklung
Prototyp

Wahrend Inbetriebnahme

i i ‘ i ‘ ' Anzahl der Unternehmen
0 1 2 3 4 5 6 7

Abbildung 5: Tests nach Entwicklungsphase

Im zweiten Teil der Umfrage wurde der Abdeckungsgrad der Softwaretests analysiert. Dieser
variiert stark (¢ 40-60%) und liegt daher weit unter der ZielgréRe von 100%. Die Mdglichkeit
zur manuellen, iterativen Detailierung der Tests ist erwiinscht (siehe Abbildungen 6). Das Be-
schreibungsmittel muss daher eine moglichst

A3: freie Wahl des Abstraktionsgrades bei der Modellierung

aufweisen.

Maoglichkeit zur manuellen, iterativen
Verfeinerung

0 1 2 3 4 5 6 7 8
irrelevant sehr relevant

Abbildung 6: Bewertung der Moglichkeit zur manuellen und iterativen Verfeinerung der
Tests.

Die Frequenz der Testanpassungen aufgrund geringer Anderungen und die daraus resultie-
rende Verwaltung erzeugt einen nennenswerten Aufwand fiir die Unternehmen (siehe Abbil-
dung 7). Daher folgt:

A4: die Neugenerierung von Testféllen und Anpassung von Modellen als Grundlage flir die
Generierung muss maoglich sein.

2 Lésungsweg zur Erreichung des Forschungsziels

Testanderungen, wegen geringen I
Anderungen (Haufigkeit)

Varianten- & Versionenverwaltung von

Testfallen (Komplexitat)
0 1 2 3 4 5 6 7 8
selten, geringe Herausforderung oft, hohe Herausforderung

Abbildung 7: Haufigkeit der Softwareanderungen und Bewertung des Aufwands fiir die
daraus resultierende Verwaltung

Im Hinblick auf die Detailierung des Testberichtes ist je nach Anwendungsbereich eine stich-
probenartige bis vollstandige Dokumentation aller Tests (v.a. Pflichtenheftanforderungen mis-

sen abgedeckt sein) nétig. Die Bedeutung der Dokumentation bezlglich der Aspekte Bestim-
mung und

Ab: Nachweis des Abdeckungsgrades der Anforderungen, sowie der Dokumentation fiir den
Kunden

ist fir die Teilnehmer von Relevanz (siehe Abbildung 8).

Bestimmung und Nachweis der
Abdeckungsgrades beim Testen

Erstellen einer Dokumentation der
durchgefuihrten Tests gegenuber Kunden

01 2 3 4 5 6 7 8
irrelevant sehr relevant

Abbildung 8: Bedeutung der Dokumentation

Bezuglich Relevanz von Simulation und Simulationsmodellen beim Testen wurde festgestellt,
dass

e als Mehraufwand max. ~20% der Softwareentwicklungsstunden fir ein Simulationsmo-
dell moglich sind,

e die Simulation je nach Teilbereich realistisch, d.h. mit hohem Detailierungsgrad, sein
muss oder nur relevante Maschinenzustande und Ubergangszeiten beinhalten soll.

Die Simulation des Bedienerverhaltes ist wichtiger als die des Werkstiicks fir die Testfallaus-
fuhrung. Letzteres ist nur von maRiger Relevanz (siehe Abbildung 9):

Simulation des Bedienerverhaltens bei einer
Simulation fur die Testfallausflihrung

Simulation des Werkstuicks bei einer
Simulation fur die Testfallausflihrung

0O 1 2 3 4 5 6 7 8
irrelevant sehr relevant

Abbildung 9: Relevanz der Simulation des Bedienerverhaltens und des Werkstiicks

10

2 Lésungsweg zur Erreichung des Forschungsziels

Die Aussage, dass neben dem Gut-Verhalten der Test des Schlecht-Verhaltens genauso wich-
tig ist, zeigt den Bedarf nach neuen Methoden fur den Test dieser noch einmal in besonderer
Weise auf (siehe Abbildung 10). Ziel muss es also sein eine Methodik flir den

AG6: Test von relevanten Fehlerszenarien

zu entwerfen.

erwartetes Gut-Verhalten
erwartetes Schlecht-Verhalten
Prozessschritte (separat, automatisiert)

relevante Szenarien

irrelevant sehr relevant

Abbildung 10: Testziel

Um die EinfGhrungsbarrieren der neuen Methodik mdglichst gering zu halten, wurde das Ziel
verfolgt auf bereits etablierte Beschreibungssprachen zuriickzugreifen. Funktionsbeschreibun-
gen, textuelle Programmiersprachen, Schrittketten, Weg-Zeit-Diagramme und State Charts
sind flr mehr als die Halfte der Unternehmen als Informationsquellen fiir die Testfallgenerie-
rung relevant. Auch die beiden weiteren Informationsquellen, Anforderungstabelle und Ab-
laufsprache, werden von 3 der 7 Unternehmen eingesetzt. (sieche Abbildung 11).

Da das Weg-Zeit-Diagramm als graphisches Beschreibungsmittel leicht anpassbar und forma-
lisierbar fur die Testfallgenerierung ist, wurde diese Notation als Basis fir die Testfallgenerie-
rung gewahlt. Die Anforderung nach einer

A7: Testfallgenerierung aus Weg-Zeit-Diagrammen

muss also, nach Konsens des projektbegleitenden Ausschusses, erflllt werden.

Funktionsbeschreibung
Textuelle Programmiersprache
Schrittketten
Weg-Zeit-Diagramm
Anforderungstabelle

State Charts

Ablaufsprache

o 1 2 3 4 5 6 7

Anzahl der Unternehmen

Abbildung 11: Informationsquellen zur Testfallgenerierung

Im Wesentlichen fiihren folgende Fehler in der Entwicklung zu Verzégerungen bei der Inbe-
triebnahme und zu Fehlverhalten im Betrieb:

11

2 Lésungsweg zur Erreichung des Forschungsziels

Nicht eindeutige Spezifikation von Kundenanforderungen
o Fehlende Definition von Testfallen
o Mangel in der Ablaufbeschreibung
Nicht dokumentiertes Verhalten, Funktionen oder Ablaufe
o Schnittstellen zur Installation
o Schnittstellen zwischen Hard- und Software (Sensorverhalten bei Uber- und
Unterspannung)
o Verhalten bei unerwarteten Stérungen
Mangelhafte Auswahl oder Auslegung von Sensoren oder Aktoren
Softwarefehler bei
o Typumwandlungen
o Scheduling-Vorgaben
o oder bei unzureichenden Parameteriberprifungen

Die Fehlerursachen sind gleichermalien auf Prozessfehler, mechanische Fehler, Fehler in der
Sensorik und Aktorik, der Software und Bedienerfehlern zurtickzufihren (Abbildung 12).

|
Prozessfehler

Mechanisch
Sensorik & Aktorik

Software

Bedienerfehler

0 1 2 3 4 5
irrelevant sehr relevant

Abbildung 12: Lokalisierung typischer Fehlerarten

Als Werkzeuge zur Komponentenbeschreibung setzen 6 von 8 Teilnehmern (Prozess-)FMEA
ein. Die darin enthaltenen Informationen werden in der Abbildung 13 beschrieben. 3 der 7
Teilnehmer beschreiben Informationen Uber die Abhangigkeit zu anderen Komponenten und
Uber die Ausfallwahrscheinlichkeit. Die weiteren Aspekte (Schnittstellen zur Steuerungssoft-
ware und die Ausfallbeobachtungswahrscheinlichkeit) werden kaum verwendet. Eine vertie-
fende Diskussion ergab, dass die FMEA hauptsachlich fiir die Untersuchung von Fehlern der
Elektronik oder flr Produktfehler eingesetzt wird, nicht jedoch fiir die Beschreibung von Fehler-
ursachen, die von der Steuerungssoftware behandelt werden mussen. Folglich wurde mit dem
Projektausschuss eine

A8: optionale Verwendung der FMEA flir die Priorisierung der Testfélle

postuliert. Der Aufwand einer durchgéngigen Erstellung von FMEA flr alle Komponenten
wurde als zu aufwandig eingestuft.

12

2 Lésungsweg zur Erreichung des Forschungsziels

Abhangigkeit zu anderen Komponenten
Kritikalitat

Schnittstellen zur Steuerungssoftware
Ausfallbeobachtungswahrscheinlichkeit

Ausfallwahrscheinlichkeit

0 1 2 3 4 5 6
Anzahl der Unternehmen

Abbildung 13: Informationen der Werkzeuge fiir die Komponentenbeschreibung

Zusammenfassend ergeben sich aus der Umfrage unter den Unternehmen folgende gesam-
melte Anforderungen:

A1: der Automatisierungsgrad der Testerstellung und —ausflihrung muss méglichst hoch
sein.

A2: Durchfiihrbarkeit sowohl gegen eine Simulation als auch gegen die reale Maschine
A3: freie Wahl des Abstraktionsgrades bei der Modellierung

A4: die Neugenerierung von Testféllen und Anpassung von Modellen als Grundlage fiir die
Generierung muss moéglich sein

Ab: Nachweis des Abdeckungsgrades der Anforderungen sowie der Dokumentation flir den
Kunden

A6: Test von relevanten Fehlerszenarien
A7: Testfallgenerierung aus Weg-Zeit-Diagrammen

A8: optionale Verwendung der FMEA fiir die Priorisierung der Testfélle

2.1.2 Analyse von Anwendungsbeispielen aus der Industrie
Neben der allgemeinen Umfrage fiir die Ermittlung der Anforderungen wurden 4 Anwendungs-

beispiele aus der Industrie fir die Ermittlung weiterer Randbedingungen durchgeflihrt. Der Fo-
kus bei der Untersuchung lag auf folgenden Gesichtspunkten:

Allgemeiner Aufbau des Fehlermanagements und der Fehlerbehandlung
Arten von Fehlern die behandelt werden

Aufbau von Fehlererkennungsmechanismen

Art der Fehlerbehandlung flr die verschiedenen Fehler

Untersucht wurden dabei 4 Anwendungsbeispiele aus 4 unterschiedlichen Unternehmen, die
sowohl kontinuierliche als auch diskrete Prozesse enthielten:

— Beispiel A (Siemens: Kontaktplan (KOP) + Anweisungsliste (AWL))

« Transportsystem (mit zwei synchronisierten Bander) mit Werksticktra-
gern: diskrete Prozesse

« Ca. 200 Programmorganisationseinheiten (POUs)

— Beispiel B (SoMachine: Funktionsbausteinsprache (FBD) + Strukturierter Text
(ST))

13

2 Lésungsweg zur Erreichung des Forschungsziels

» Pflasterverpackungsmaschine mit 2 Teilen: 1. Teil kontinuierliche + 2.
Teil diskrete Prozesse

+ Ca. 450 POUs
— Beispiel C (TwinCat 2 & 3 : ST)
» Kleine Sortieranlage: diskrete Prozesse
« Ca.20POUs
— Beispiel D (TwinCat 3: Ablaufsprache (AS) + ST)
* O-Ring-Montage: diskrete Prozesse
« Ca. 100 POUs

Bei der Untersuchung konnten die folgenden Erkenntnisse gewonnen werden. Der Aufbau des
Fehlermanagements folgt, ebenso wie der Aufbau der restlichen Software, einer hierarchi-
schen Struktur. Die Fehlererkennung erfolgt in den meisten Fallen auf unterster Baustein-
ebene von Bausteinen, die die Funktion einer Komponente steuern (siehe Abbildung 14). Auf
dieser Ebene wird entschieden, ob der Fehler auf die nachste Hierarchieebene (Steuerung
mehrerer Komponenten — Station) weitergeleitet oder lokal behandelt wird. In den meisten
Fallen wird der Fehler weitergegeben und es wird eine entsprechende Fehlermeldung gesetzt.
Auch auf Stationsebene kann der Fehler lokal behandelt werden, wird jedoch in den unter-
suchten Beispielen ebenfalls meist weitergeleitet und in einem separaten Baustein, der flr das
Fehlermanagement zustandig ist, ausgewertet. Die Fehlermanagement-Bausteine sind in der
Regel fur die Erkennung von Sammelfehlern und die Entscheidung, welche Fehlerbehandlung
eingeleitet wird, zustandig, welche dann an alle Bausteine durch das Setzen einer Variablen
getriggert wird (z.B. Heimlaufstopp).

Applikation

¢ Sammelfehler
(|

) Fehlermanagement

Fehlerbehandlung

W Error Gesamtmaschine
Watch
Uberwachung intelligente
Feldgerate (z.B. Antriebe) Main

Station Station
Fehler ”_/'\—i 1

N
Kompo- Kompo- Kompo-
nente nente nente

Abbildung 14: Fehlerbehandlung von Steuerungssoftware

Da bei dem Ansatz spezifische Szenarien getestet werden sollen, muss die Maschine hierflr
in eine bestimmte Ausgangssituation gebracht werden. Alle Anwendungsbeispiele haben eine
solche definierte Grundstellung, von der aus der Automatikmodus gestartet werden kann. Dar-
Uber hinaus wurde eine wichtige Erkenntnis bei der Untersuchung dieser Stellung aus den
Anwendungsbeispielen gewonnen.

14

2 Lésungsweg zur Erreichung des Forschungsziels

RB 1: Alle Anwendungsbeispiele enthalten Routinen fiir eine Grundstellungsfahrt/ Referenz-
punktfahrt/ Reset.

Es kénnen von den Testfallen also bereits definierte Routinen genutzt werden, um nach einer
Fehlerinjektion wieder in einen definierten Zustand zu gelangen. Eine separate Implementie-
rung fur die Testfalle ist nicht notwendig.

Eine weitere Untersuchung der Routinen zu Grundstellungsfahrten ergab, dass hierfir bei ei-
nigen Anwendungsbeispielen manuelle Operatoreneingriffe notwendig sind. Daher wurde fol-
gende Randbedingung aufgenommen:

RB 2: manuelle Eingriffe durch den Operator wéhrend der Testausfiihrung miissen spezifizier-
bar sein.

Von den Ursachen, die zum Versagen eines Automatisierungssystems fihren konnen, werden
die in Abbildung 15 blau markierten von der Steuerungssoftware erkannt und behandelt.

Ausfalle (Bauelemente) Kommunikation |
A Elektromagn. Stérungen | Umg?bung f(Dr:uck)luﬂ,
physikalisc ~NeE romzufuhr,...
Versagen eines Software-Verfalschung | Komponenten (auch
Automatisierungs Produktfehler | intelligente Feldgerate)
systems Prozess \
Sicherheit (safety) |
Logistik |

nicht- Bedienfehler |
inharent Wartungsfehler |
Absichtliche Fehler |

Abbildung 15: Fehler die von der Steuerungssoftware behandelt werden

Die Fehler werden dabei durch die in Abbildung 16 genannten Mechanismen erkannt. Die
Uberpriifung von Parametrierungen kommt insbesondere bei der Erkennung von Bedienerfeh-
ler zur Anwendung, also bei Schreib- und Lesevorgéngen der Bedienerschnittstelle. Mit der
Uberpriifung von Sensoren werden die meisten Fehlerursachen tiberwacht. Bei der Uberprii-
fung von Verschrankungen wird beispielsweise tberprift, ob ein Zustand glltig sein kann (es
kénnen z.B. nicht beide Endlagen eines Pneumatikzylinders gleichzeitig eingenommen wer-
den). Die Laufzeitiiberwachung Uberprift, ob ein Sensorsignal in einer bestimmten, durch An-
forderungen spezifizierte Zeitbeschrankungen, erreicht/ inaktiv wird. Gultige Intervalle werden
insbesondere bei Temperatur- oder Druckluftiiberwachungen Uberprift. Ein fehlendes Signal
ist fir die Uberpriifung von Safety-Funktionen wichtig, wie z.B. der Uberwachung, ob die
Schutztliren geschlossen sind. Sammelfehler werden bei der Erkennung von zwei oder mehr
Fehlern zur gleichen Zeit gesetzt und geben meist detaillierteren Riickschluss auf eine moégli-
che Fehlerursache. Als eine Besonderheit bei der den Fehlererkennungsmechanismen wur-
den die Verriegelungsbedingungen identifiziert. Diese kdnnen nur begrenzt zu den Fehlerbe-
handlungsroutinen gezahlt werden, da sie zur Fehlervermeidung eingesetzt werden. Dies
funktioniert, indem bei jeder moéglichen Ausflihrung, also in jedem moglichen Kontrollflusspfad,
bestimmte Variablen (iberpriift werden. Als Beispiel ist die Uberpriifung von Betriebsarten zu
nennen. Es wird in jedem Zyklus Uberprift, welche Betriebsart aktiv ist, ansonsten sind ver-
schiedene Aktionen nicht erlaubt und werden nicht aufgerufen.

Die Fehlerkennungsmechanismen sind insbesondere fir die Anforderung nach Tests relevan-
ter Fehlerszenarien zu beleuchten, da die Fehlerinjektion genau diese Fehlererkennungsme-
chanismen triggern muss.

15

2 Lésungsweg zur Erreichung des Forschungsziels

RB 3: Fiir den Test relevanter Fehlerszenarien miissen Fehler entsprechend der untersuchten
Fehlererkennungsmechanismen injiziert werden.

Da Verriegelungen in jedem Pfad Uberpriift werden, macht eine Fehlerinjektion in diesem Falle
jedoch wenig Sinn. An dieser Stelle ist vielmehr eine statische Codeanalyse angebracht, mit
welcher Uberprift werden kann, ob die Verriegelungsbedingung tatsachlich in jedem Pfad ein-
gehalten wird.

Im Gegensatz dazu spiegeln die anderen Fehlererkennungsmechanismen bestimmte Szena-
rien wieder. Auf Basis von Code- bzw. Kontrollflussanalyse generierte Testfalle wirden jedoch
jedes mogliche Szenario, welches zu einer Fehlererkennung fiihrt, abbilden. Dies bestatigen
auch erste, in einem interdisziplinaren Praktikum durchgefiihrte, Versuche. Die Komplexitat
der Pfadanalyse ist sehr hoch und fiihrte zu einer Generierung einer Unmenge von Testfallen,
die zum einen an einer Maschine kaum durchfiihrbar sind und zum anderen keine realistischen
Szenarien wiederspiegeln. Eine anforderungsbasierte Testfallgenerierung auf Basis der Mo-
dellierung ist hier vom Kosten-Nutzen-Faktor deutlich vorzuziehen. Es wurden daher folgende
Randbedingungen formuliert.

RB 3.1: Zur Uberpriifung von Verriegelungsbedingungen muss der Kontrollfluss untersucht
werden.

RB 3.2: Zur Uberpriifung von Fehlerbehandlungen von bestimmten Szenarien (Priifung Para-
metrierung, Priifung (Sensoren), Uberpriifung komplexes Signal und Sammelfehler) soll eine
anforderungs- bzw. modellbasierte Testfallgenerierung durchgefiihrt werden.

Prufung Parametrierung |

Priifung (Sensoren)l— _ Verschrankung
Laufzeitliiberwachung

komplexes Signal Gultige Interyalle
Verriegelung | Fehlendes Signal |

Sammelfehler | Signal |

Uberpriifung

Abbildung 16: Fehlererkennungsmechanismen

Die Untersuchung von Fehlerbehandlungen ergab weitere wichtige Ruckschlusse. In allen Bei-
spielen gibt es fir die Behandlung von erkannten Fehlern keine lokale, individuelle Fehlerbe-
handlung. Die Fehler werden stattdessen nach Kritikalitat eingestuft und entsprechend behan-
delt. Klassische Beispiele fur Fehlerbehandlungsklassen sind Heimlaufstopp, Nothalt, etc. (Ab-
bildung 17). Neben der allgemeinen Fehlerbehandlung gibt es jedoch noch einen individuellen
Alarm und eine Markierung der betreffenden Produkte als Schilechtteil.

Als Randbedingungen wurden hier daher festgehalten:
RB 4: Tests zur Priifung von Fehlerbehandlungen kénnen aufgeteilt werden in:
* Fehlerindividueller Teil: Test der richtigen Fehlererkennung und Meldung
« Test der richtigen Fehlerbehandlung fiir verschiedene Fehlerbehandlungsklassen

Der Vorteil der aus dieser Randbedingung gezogen werden kann ist, dass der Aufwand zur
Testspezifikation deutlich reduziert werden kann. Die verschiedenen Fehlerbehandlungen
(Heimlaufstopp, Nothalt, etc.) konnen fir die Tests einmal spezifiziert und flr weitere Tests
stets wiederverwendet werden.

16

2 Lésungsweg zur Erreichung des Forschungsziels

Alarm/ Abfangen/ Verriegelung

Nachricht Anhalten nach Taktzyklus |
Maschinen Nothalt Modul/ Station,

reaktion Anhalten der gesamte Anlage nach

_ Maschine TaktZVkIUS

Markierung von |
Produkten als Benutzer-

Schlechtteil definiert, lokal| -|__Nothalt gesamte Anlage |

Abbildung 17: Fehlerbehandlung

Auf Wunsch des Projektausschusses und bei genauer Analyse der Anwendungsbeispiele
kann es bei einer Fehlerinjektion von einigen Fehlern zu unsicheren bzw. undefinierten Zu-
standen der Maschine kommen. Folglich wurde zusatzlich die Randbedingung 5 formuliert:

RB 5: eine Abbruchroutine muss vorgesehen werden, um undefinierte Zusténde zu vermeiden.

Zusammenfassend konnten aus der Analyse der Anwendungsbeispiele folgende Randbedin-
gungen ermittelt werden:

RB 1: Alle Anwendungsbeispiele enthalten Routinen fiir eine Grundstellungsfahrt/ Refe-
renzpunktfahrt/ Reset.

RB 2: manuelle Eingriffe durch den Operator wéhrend der Testausfiihrung miissen spezi-
fizierbar sein.

RB 3: Flir den Test relevanter Fehlerszenarien miissen Fehler entsprechend der unter-
suchten Fehlererkennungsmechanismen injiziert werden.

RB 3.1: Zur Uberpriifung von Verriegelungsbedingungen muss der Kontrollfluss untersucht
werden.

RB 3.2: Zur Uberpriifung von Fehlerbehandlungen von bestimmten Szenarien (Priifung Pa-
rametrierung, Priifung (Sensoren), Uberpriifung komplexes Signal und Sammelfehler) soll
eine anforderungs- bzw. modellbasierte Testfallgenerierung durchgefiihrt werden.

RB 4: Tests zur Priifung von Fehlerbehandlungen kénnen aufgeteilt werden in:
* Fehlerindividueller Teil: Test der richtigen Fehlererkennung und Meldung
« Test der richtigen Fehlerbehandlung fiir verschiedene Fehlerbehandlungsklassen

RB 5: eine Abbruchroutine muss vorgesehen werden, um undefinierte Zustédnde zu vermei-
den

2.1.3 Untersuchung von Codier- bzw. Ausfiihrungsrichtlinien

Eine Diskussion mit dem Projektausschuss ergab, dass Verriegelungsbedingungen unterneh-
mensspezifisch in Codier- bzw. Ausflihrungsrichtlinien festgehalten werden. Es wurden Doku-
mente entsprechender Art von zwei Unternehmen untersucht. Da die Richtlinien weitere Re-
geln enthalten, fiir die sich eine Uberpriifung an Kontrollflissen anbietet, wurden auch diese
extrahiert.

Abstrahiert wurden folgende Ausflhrungsrichtlinien, die tber die klassische Codeanalyse hin-
ausgehen extrahiert:

17

2 Lésungsweg zur Erreichung des Forschungsziels

1. Regel: Bei jeder Schrittweiterschaltung missen entsprechende Statusvariablen (re-
turn values) aktualisiert werden (sonst Abbruch)

2. Regel: Nach jedem Start-Schritt muss es einen Warteschritt geben

3. Regel: Innerhalb von FBs dirfen keine globalen Variablen verwendet werden

4. Regel: Es darf nicht auf das Eingangsabbild zurtickgeschrieben werden

Regel 1 und Regel 2 sind dadurch gekennzeichnet, dass die Schritte bestimmte Lese- oder
Schreibzugriffe auf bestimmte Variablen haben. Daher ist es mdglich Kontrollflusspfade auf
bestimmte Abfolgen von Lese- und Schreibvorgangen von Variablen zu tberprifen.

Es wurde daher folgende zusatzliche Anforderung formuliert:

A9: Die Codeanalyseregeln sollen entsprechend der aus den Unternehmen analysierten
Regeln und den Verriegelungsbedingungen méglich sein

2.2 Vorrecherche Stand der Forschung und Entwicklung

Im Folgenden werden zu dem Forschungsthema relevante aktuelle Veréffentlichungen bzw.
Ansatze vorgestellt und anhand von zentralen, aus dem Kontext des Antrages abgeleitete Kri-
terien miteinander verglichen. Als wesentliche Aspekte dieses Forschungsvorhabens kénnen
die Fokussierung auf Steuerungssoftware, die statische Analyse von Steuerungscode, das
automatisierte Erstellen und Ausfiihren von Testfallen, sowie die besondere Berticksichtigung
von Fehlerbehandlungsroutinen angesehen werden. Tabelle 1 fasst diesen Vergleich ab-
schliefend zusammen.

2.2.1 Statische Codeanalyse

Das Projekt [LD09] beschaftigt sich mit der testgetriebenen Automatisierung. Dabei wird ver-
sucht, potentielle Fehlerquellen in IEC 61131-3 Code mit Hilfe einer statischen Codeanalyse
aufzudecken. Zu einem ausgiebigen Softwaretest werden zusatzlich Funktionstests bendtigt,
um das dynamische Verhalten zu Uberprifen. Zur Formulierung der Testfalle wird ein schlis-
selwortbasiertes Vorgehen vorgeschlagen. Die Testfallgenerierung erfolgt geman einer vorhe-
rigen Spezifikation in Excel-Tabellen. In diesem Ansatz werden keine Techniken der Fehlerin-
jektion angewendet.

In [FBO5] wird ein Re-Engineering Ansatz fir SPS Steuerungscode (IEC 61131-3) in einem
zweistufigen Prozess eingeflihrt. Dabei wird die Programmstruktur zuerst in ein UML-Modell
transformiert. AnschlieRend wird das Verhalten der Software (die verwendeten Algorithmen)
in einen endlichen Automaten umgewandelt. Dieser Formalisierungsschritt erméglicht die An-
wendung weiterer Analyseverfahren, Verifikations- und/oder Simulationslaufe. Die Verwen-
dung im Kontext einer Testfallgenerierung wird jedoch nicht angestrebt.

Zur Analyse der Struktur, Qualitdt und Fehlerfreiheit von Software haben sich Ansatze zur
statischen Codeanalyse etabliert [EmNIi08]. Im Gegensatz zu dynamischer Codeanalyse, die
eine Ausfiihrung der Software erfordert, bestimmt statische Codeanalyse die Eigenschaften,
z.B. Softwarestrukturen oder mdgliche Programmzustande [ArBi05], ohne Ausfiihrung der
Software [EmNIO8]. Mittels statischer Analyse kénnen zudem Abweichungen von der ge-
winschten Komplexitat der Software oder auffallige Codefragmente identifiziert werden. Ob-
wohl bereits einige Werkzeuge zur statischen Codeanalyse existieren, z.B. Lint fir C [Jo78]
und FindBugs fur Java [AHM+08], wird IEC 61131-3 bisher nur von wenigen Anbietern unter-
stlitzt [APR+13]. CODESYS Static Analysis analysiert den Code anhand vordefinierter Regeln,
beispielsweise zur Uberprifung der Einhaltung von Namenskonventionen oder Identifikation
unerreichbarer Codebestandteile. Mittels itris PLC Checker kdnnen dartiber hinaus Pro-
grammablaufplane dargestellt, Komplexitatsmetriken analysiert und durch ,Copy and Paste*
wiederverwendete Softwareeinheiten identifiziert werden. Es existiert jedoch bisher noch kein
Ansatz, der eine Spezifikation unternehmensspezifischer Kriterien fir Ausfiihrungsrichtlinien
erlaubt.

18

2 Lésungsweg zur Erreichung des Forschungsziels

2.2.2 Fehlerinjektion

Um die Zuverlassigkeit von Systemen zu validieren, hat sich die Fehlerinjektion (FI) als Me-
thode etabliert. Mit der Fehlerinjektion konnen die Mechanismen der Fehlerbehandlung und
Fehlererkennung Uberpriift werden. Fl-Ansatze kdnnen in hardwareimplementierte Fl (HWIFI),
softwareimplementierte FI (SWIFI) und modell- bzw. simulationsbasierte FI (MIFI) aufgeteilt
werden [SVE+10]. Wahrend HWIFI und SWIFI meist bei Prototypen oder fir Systemtests ver-
wendet werden, wird MIFI tendenziell eher in den friihen Phasen des Entwicklungsprozesses
angewendet, um friihzeitig Feedback, bezlglich der Funktion eines Systems, zu bekommen
[HTI97].

Die Testmethoden kénnen auch durch die Arten von Fehlern, die injiziert werden, unterschie-
den werden. In einige Ansatzen werden bestimmte Klassen von Fehlern und die Reaktion
eines Systems auf diese Klassen Uberprift. Bei diesen Ansatzen werden explizit Fehlermo-
delle, d.h. mégliche Stérungen, die in manchen Ansatzen auch als Mutanten oder Saboteure
bezeichnet werden, spezifiziert. Das Fehlermodell definiert die Arten der mdglichen Fehler ei-
nes Systems in Bezug auf verschiedene Kriterien wie die Phase der Erstellung (Design, Um-
setzung, etc.), die Dimension (Hardware-Fehler, Software-Fehler), die Systemgrenze (von in-
nerhalb oder auRerhalb des Systems injizierte Fehler, etc.) oder die Persistenz (voriiberge-
hender oder permanenter Fehler) [ALR + 04]. Bei vielen Ansatzen wird au’erdem der Aspekt
des Zeitverhaltens des Fehlers fokussiert, also das sporadische oder zufallige Auftreten eines
Fehlers im Gegensatz zu Fehlern zu definierten Zeitpunkten.

Die drei verschiedenen Ansatze - HWIFI, MIFI und SWIFI werden in den folgenden Abschnit-
ten naher betrachtet.

2.2.2.1 Hardwareimplementierte Fehlerinjektion (HWIFI)

Es existieren bereits zahlreiche Werkzeuge um integrierte Schaltkreise und insbesondere Mik-
roprozessoren mit HWIFI zu testen. Die Methoden sind daher insbesondere auf diese Art von
Systemen und dementsprechend auf Arten von Fehlern, die hier auftreten kénnen, ausgerich-
tet. Beispiele sind elektromagnetische Stérungen [ZAV04] und Stérungen auf Pin-Level Sto-
rungen [HTI97]. Ein Uberblick tber verschiedene Tools und Methoden kann in [HTI97] und
[ZAV04] gefunden werden.

Fir SPSen existieren zwar bereits Ansatze flir Hardware-in-the-Loop-Prifstande [SKVO00], es
wurde jedoch noch keine besondere Aufmerksamkeit auf FI-Techniken in diesem Bereich ge-
legt. Geeignete Fehlermodelle und Studien in diesem Bereich sind daher nicht verfiigbar.

2.2.2.2 Modellbasierte Fehlerinjektion (MIFI)

Bei MIFI kann unterschieden werden, ob die Fehler in Hardware- oder in die Softwaremodelle
injiziert werden. Hardwaremodelle existieren beispielsweise in der Elektrotechnik in Form der
»very High Speed Integrated Circuit Hardware Description Language® (VHDL) und wurde ins-
besondere fir integrierte Schaltkreise entworfen. Dementsprechend werden diese Modelle fir
die Fehlerinjektion und eine Simulation der Fehlerreaktion auf diese Fehler genutzt [BGG+05].

Im Automobilbereich gibt es weiterhin einige Ansatze fir die modellbasierte Fehlerinjektion
[SVE+10]. In der Regel werden bei diesen Ansatzen vor allem bereits vorhandene MATLAB/
Simulink-Modelle fiir die Fehlerinjektion genutzt, welche ohnehin im Entwicklungsprozess ver-
wendet werden. In [SVE+10] wird darliber hinaus das Ergebnis der Testlaufe fir die Testfall-
generierung fir Systemtests genutzt.

In der Produktionsautomatisierung wird in [KoVo11] ein Ansatz fir die Fehlerinjektion in aus-
fuhrbare UML-Zustandsdiagramm-Modelle vorgeschlagen. In dem Ansatz wird weiterhin vor-
geschlagen aus dem Programmcode alle méglichen Pfade, die zu einem Komponentenausfall
durch sogenanntes ,program slicing“ fiihren, zu extrahieren, um volle Pfadabdeckung zu ge-
wabhrleisten. Der Ansatz wurde jedoch nur auf konzeptioneller Ebene umgesetzt. Weiterhin
werden keine Fehlermodelle verwendet, sondern fehlerhafte Komponenten miissen manuell
im Modell ausgewahlt werden.

19

2 Lésungsweg zur Erreichung des Forschungsziels

2.2.2.3 Softwareimplementierte Fehlerinjektion (SWIFI)

Ebenso wie fur MIFI und fur HWIFI sind bereits Werkzeuge fur die SWIFI in integrierten Schalt-
kreise vorhanden [CMS98]. Der Vorteil der SWIFI ist, dass sie garantiert zerstérungsfrei und
reproduzierbar ist. In [PAC+12] wird ein Ansatz fur die Validierung spezifizierter Safety-Funk-
tionen vorgeschlagen. Die Vorgehensweise unterstitzt die Uberpriifung nach der Einhaltung
dieser Safety-Funktionen unter jeder Bedingung. Fehlermodelle oder die Schaffung einer an-
wenderfreundlichen Notation sind nicht im Fokus der Arbeit.

Neben der Fl bei der Co-Simulation wird in [SIVu05] auch die Einbringung von definierten
Fehlern bei der Codegenerierung vorgeschlagen. Dieser Fehler tritt wahrend der Ausfiihrung
auf. Ein ahnlicher Ansatz wird in [VBR+07] unter der Nutzung von SCADE-Modellen vorge-
schlagen.

2.2.3 Testen in der Automatisierungstechnik

Im Maschinen- und Anlagenbau bzw. in der Produktionsautomatisierung ist das manuelle Tes-
ten immer noch dominierend. Seit einigen Jahren wird der Bedarf nach automatisierten Tests
in dieser Doméane jedoch wahrgenommen und erste Ansatze bzw. Werkzeuge fir die automa-
tisierte Durchfiihrung von Tests erscheinen auf dem Markt [Testmanager].

Auch in der Forschung existieren bereits einige Ansatze fur die automatisierte Testdurchfih-
rung.

In [EKF+09] wird auf der Grundlage von IEC 61499 ein Grey-Box-Testverfahren erldutert. Bei
dieser vorgeschlagenen testgetriebenen Entwicklung werden die Testdaten, bestehend aus
Eingangs- und Ausgangsdaten, dem auslésenden Ereignis und dem erwarteten Ergebnis vom
Steuerungsprogrammierer spezifiziert. Dieser Ansatz auf Unit-Testebene bedarf der manuel-
len Beschreibung des Testfalls durch den Entwickler und verwendet keine Automatisierung
bei der Erstellung. Die Regressionstests werden jedoch automatisiert. Durch die fest vorgege-
benen Testfalle erfolgt keine Fehlerinjektion zur Laufzeit, die ein mdgliches Maschinenfehlver-
halten darstellen konnte.

In [SEK+09] wird die automatische Ausfiuihrung von Tests flr Steuerungsprogramme unter-
sucht. Eine Funktionsspezifikation dient zur Erzeugung der Testablaufe auf einem Prifstand,
der hardwaregebunden mit der SPS gekoppelt ist. Dabei werden keine Fehler direkt injiziert,
sondern der spezifizierte Funktionsumfang (also die Gutfalle) abgepruft.

In dem Ansatz nach [StEr08] wird die Ubertragbarkeit von Testkonzepten aus der Anwen-
dungsentwicklung auf SPS-Steuerungssoftware Uberprift. Dabei steht die automatische Aus-
fuhrung von Modultests in Form von daily builds im Vordergrund. Eine wesentliche Kernaus-
sage ist: ,Leider unterstiitzen die meisten Toolhersteller im SPS-Umfeld die wesentlichen As-
pekte einer modernen Softwareentwicklung nur unzureichend” [StEr08].

In [OMO09] sollen méglichst viele verschiedene Testfalle zur Uberpriifung des korrekten Ver-
haltens einer SPS-Steuerungssoftware generiert und ausgefiihrt werden. AulRerdem soll ein
Verfahren fir die intuitive Testfallspezifikation entwickelt werden. Es werden jedoch keine Me-
chanismen zur Fehlerinjektion in der Skizze genannt.

Das Forschungsprojekt ,Virtueller Funktionstest fir eingebettete Systeme (VIFES)" fokussiert
auf die auch in diesem Projekt angestrebte Vorverlagerung der Abnahmetestfalle in frihere
Entwicklungsphasen und deren Wiederverwendung durch den Einsatz von Testautomaten fir
Regressionstests [Ru07].

Diese Losungsansatze sind ein erster Schritt in die richtige Richtung. Der hohe Aufwand der
Testerstellung ist damit jedoch noch nicht geldst, um Tester adaquat zu unterstitzen. In der
Forschung wird daher intensiv an der Fragestellung der Generierung von Testféllen aus semi-
formalen Modellen durch die Weiterentwicklung und Formalisierung verschiedener Notationen
gearbeitet.

20

2 Lésungsweg zur Erreichung des Forschungsziels

In [Ot08] wird ein Testverfahren flir Funktionsbausteine flir funktional sichere Anwendungen
vorgestellt. Dabei werden die auszufiihrenden Testfalle aus einem Status-Diagramm erzeugt,
das als Funktionsbaustein-Spezifikation vorausgesetzt wird. Das Ergebnis des ausgefiihrten
Testfalls wird anhand eines Ein-/Ausgabevergleichs in das Test-Logbuch eingetragen. Es wer-
den Parameter aufgrund einer Risikoanalyse fir Testfalle ausgewahlt, jedoch werden keine
Fehler direkt injiziert. Der dafir notwendige White-Box Test wird lediglich zur statischen Code-
analyse verwendet.

Die Unified Modeling Language (UML) ist eine der weitverbreitetsten Notation um die Struktur
und das Verhalten von Software zu modellieren, daher ist es nicht verwunderlich, dass einige
Forschungsansatze diese Sprache als Grundlage zur Testfallgenerierung nutzen.

In [KHC+99] werden Unit-Tests aus UML-Zustandsdiagrammen erzeugt. Die Transformation
aus diesen Diagrammen heraus in erweiterte, endliche Zustandsautomaten kann sowohl kon-
trollifluss- als auch datenflussorientiert sein. Bei der Testdurchfiihrung wird somit Gberprift, ob
sich das System-Under-Test (SUT) gemaf der Spezifikation (UML Zustandsdiagramm) ver-
halt. Eine Berlcksichtigung von Fehlersituationen ist bei diesem Ansatz nicht gegeben.

In [HWO+10] und [HuFr06] werden geeignete Diagramme der UML fiir die Testfallgenerierung
untersucht, insbesondere mit dem Ziel Testfalle fir die nach IEC 61499 implementierten Steu-
erungssoftware zu generieren. Dabei werden Interaktionsdiagramme fir die Extraktion von
Testsequenzen vorgeschlagen. [HKV+11] setzt eine solche Testfallgenerierung aus Zu-
standsdiagrammen mit Anwendung eines Algorithmus einer Extraktion aller Pfade um.

[KHDO08] schlagt ebenso einen Ansatz zur automatischen Testfallgenerierung aus UML-Zu-
standsdiagrammen vor, indem diese zunachst in ein formales Petrinetzmodell Uibersetzt wer-
den. Daraufhin kénnen die Testfalle durch das Auffalten der Petrinetze generiert werden.

In [KCB11] wird die Testfallgenerierung aus UML-Zustandsdiagrammen Uber den Standard
der Testing and Control Notation (TTCN-3) umgesetzt. Die Evaluation wird an einem Kommu-
nikationsprotokoll gezeigt.

Die Ausflhrbarkeit durch Anpassung und Formalisierung von Sequenzdiagrammen wird in
[KTV12] fokussiert. Dabei entstehen Sequenzdiagramm, die direkt als Testfalle in der CODE-
SYS Programmierumgebung ausfihrbar sind.

Tabelle 1: Vergleich und Bewertung der existierenden Ansétze

Referenz Stati- Fokussie- Automati- Automatisierte Fokussie-
sche rung auf sche Gene- Ausfiihrung rung auf
Code- Fehlerbe- rierung von von Testfdllen Steuerungs-
analyse handlung Testfallen software
[LDO9] + - - + +
[FBO5] + - - - +
[Jo78] + - - - -
[AHM+08] + - - - -
[CODESYS] + - - - +
[itris PLC)))
Checker] + *
[ZAV04] - + - + -
[HTI97] - + - + -
[SKV00] - - - + +
[BGG+05] - + - + _
[SVE+10] - + + + -

21

2 Lésungsweg zur Erreichung des Forschungsziels

[KoVo11] - + - + +
[CMS98] - + - + -
[PAC+12] - + - + -
[SIVu05] - + + -
[VBR+07] - + + -
[Tess;(r:rz]ana-) _ _ + +
[EKF+09] o - - o] +
Verdffentlichun- [SEK+09] - - o o +
gen, Werkzeuge
und Projekte [StEr08] - - - o +
[OMO09] - - + o] +
[Ru07] o - o] + o]
[Ot08] o] - + + o
[KHC+99] - - + - o
et | - | - | - +
[HKV+11] - - + - +
[KHDO8]

[KCB11] - - + - +
[KTV12] - - - + +

Legende: + Merkmal erfillt, - Merkmal nicht erfiillt, o Merkmal teilweise erfillt

Wie in Tabelle 1 gezeigt, erfillt keiner der existierenden Ansatze und Werkzeuge die Anforde-
rungen an eine automatisierte Losung flir den Test von Fehlerbehandlungsroutinen im Bereich
der Steuerungssoftware. Auf den Mangel solcher Lésungen wird zum Teil auch in [StEr08]
eingegangen. Es wird insbesondere deutlich, dass es nur vereinzelt (im Automotive-Bereich)
zum Test von Fehlerbehandlungsroutinen kommt, obwohl diese den Grofteil der Gesamtsoft-
ware ausmachen. Der Stand der Forschung und Entwicklung zeigt klar den Handlungsbedarf
und somit die Notwendigkeit einer Lésung.

2.3 Verfahren zur statischen Codeanalyse

Neben dem Test von Fehlerbehandlungsroutinen wurde aus der Zielstellung und den im Pro-
jekt ermittelten Randbedingungen die Notwendigkeit abgeleitet, dass die Steuerungs-Software
auf die Einhaltung von Ausfiihrungsrichtlinien Gberprtft werden muss. Als umzusetzende Aus-
fuhrungsrichtlinien wurden anhand der in der Ist-Analyse gegeben Anforderung A9 gemeinsam
mit den Industriepartnern des Projekts ein grundsatzliches Regelwerk entworfen, dass sich
prinzipiell auf die IEC 61131-3 Programmiersprachen anwenden lasst:

1. Regel: Bei jeder Schrittweiterschaltung mussen entsprechende Statusvariablen (re-
turn values) aktualisiert werden (sonst Abbruch)

2. Regel: Nach jedem Start-Schritt muss es einen Warteschritt geben
3. Regel: Innerhalb von FBs dirfen keine globalen Variablen verwendet werden
4. Regel: Es darf nicht auf das Eingangsabbild zurlickgeschrieben werden
Die Regeln missen wie auch die Verriegelungsbedingungen bei jeder Ausfiihrung, also in

jedem moglichen Kontrollflusspfad, eingehalten werden. Um die Regeln an einem Code-Mo-
dell automatisch Gberprifen zu kénnen, missen sie in einer formalisierten Art vorliegen.

22

2 Lésungsweg zur Erreichung des Forschungsziels

Da ST die in den Anwendungsbeispielen am haufigsten verwendete Sprache ist wurde zu-
nachst ein Konzept fir die Extraktion eines Kontrollflussgraphen und einer Analyse desselben
entwickelt. Das Vorgehen fiir die Codeanalyse ist in Abbildung 18 dargestellt. Zunachst wird
der Code aus einem PLCopen XML Dokument extrahiert und Uber einen abstrakten Syntax-
baum (AST) in einen Kontrollflussgraphen (CFG) extrahiert. Nachdem eine Regel entspre-
chend der oben genannten Beispiele in formalisierter Form angegeben wurde, kann der Kon-
troliflussgraph schlieBlich auf die Einhaltung der Regel Uberprift werden.

ST Code Codemodell
| PLCOpen XML > Kontrollflussgraph (AST, CFG)

Extraktion des Codes,
IF pusher.workPos THEN UberfUhrung inS
pusher.m BasePos(); COdemOde”

StatusVar:= OK:
ELSIF pusher.basePos THEN

pusher.m WorkPos():

StatutsVar:=0K;
END_IF

Formalisierte

Regel
(\'
W|R|WR |
LValriatl)IeNa]me;) ' COdeal’.]aIyse e
* (lFCOND# Manuelle Englne
(boolean Spezifikation einer

Expression); _'?:n%?l;?g:"fe des Wird die spezifizierte Regel in

) allen Ablaufen eingehalten?

Abbildung 18: Grundsatzliche Vorgehensweise bei der statischen Codeanalyse von
ST-Code

Abbildung 18 zeigt die verschiedenen Darstellungsmaoglichkeiten fir den Code. Neben der
Darstellung als Kontrollfluss, unterstitzt die ZuMaTra-Codeanalyse auch die Darstellung von
sogenannten intraprozedualen Kontrollfllissen, bei denen Aufrufe anderer Funktionen und
Funktionsbausteine ,aufgeklappt® werden kénnen. Die Aufrufhierarchie kann dementspre-
chend ebenfalls auf die Einhaltung der Richtlinien Gberprift werden.

23

2 Lésungsweg zur Erreichung des Forschungsziels

ppied Rues

POU Node

I POUInterface
4 Body
ST

¢ N

CFG Intraprozeduraler CFG

AST| CFG [iCFG | Selected Source Code | Project Souce Code | Applied Rules AST | CFG | iCFG | Selected Source Code | Project Souce Code | Applied Rules

= e
-3
g

Abbildung 19: Verschiedene Darstellungsweisen des Codes

Regel 1 und Regel 2 sind dadurch gekennzeichnet, dass die Schritte bestimmte Lese- oder
Schreibzugriffe auf bestimmte Variablen haben. Daher ist es méglich Kontrollflusspfade auf
bestimmte Abfolgen von Lese- und Schreibvorgédngen von Variablen zu Gberprifen.

Um die Regeln formalisiert spezifizieren zu kénnen, wurde ein einfaches Template, angelehnt
an ST, entwickelt. Dies erméglicht den Anwendern, die mit der IEC 61131-3 vertraut sind,
einen einfachen Einstieg und schnelles Verstandnis fiir die Spezifikation.

o Target: Modell, das untersucht werden soll (CFG oder iCFG)
e Paths: Bedingungen, nach denen die zu testenden Pfade ausgewahlt werden:
o ALL; — es werden alle méglichen Pfade betrachtet.

o [W | R | WR J#VariableName; — Auswahl Pfade, entlang denen die bei der
Variable ,VariableName“ ein [schreibender | lesender | schreibender oder le-
sender] Zugriff erfolgt.

o |IFCOND#(booleanExpression); — Pfade, welche Uber einen Verzweigungskno-
ten (IF) verlaufen, der die Bedingung ,booleanExpression® hat. ,booleanEx-
pression® ist ein boolescher Ausdruck nach IEC 61131-3 Syntax.

o PathCondition: Bedingung die Gberprift werden soll (gleiche Spezifikation wie bei Pa-
ths)

o Beispielregel: ,In allen Pfaden eines Kontrolliflusses in denen ein Schreibzugriff auf
VariableX stattfindet soll Gberprift werden ob VariableX<5 ist.”

24

2 Lésungsweg zur Erreichung des Forschungsziels

= Target: CFG;
= Path: W#VariableX;
= PathCondition: IFCOND#(VaribaleX<5);

Alle Pfade des Kontrollflusses werden entsprechend den spezifizierten Regeln untersucht.

2.4 Vorgehensweise fiir den Test von Fehlerbehandlungsroutinen

Dekomposition des Systems e Testfallgenerierung
e== mm pBandmodul: ..
===
e " '.\ Sortierband o L1 [Slider Pos|StateChangeBlocK ‘Movedin := FALSE | ¢
.‘ e 3 < 1 3 Stamp Pos|StateChangeslock] StamplLowered := FALSE
L) '0\ r > 2 (2 [stamp Pos|StateChangeBlocK StampUp = FALSE
[] &
» * , 3 (6 |Shider Pos|[StateChange! iderSensorVovedOut := FALSE[St:
= “\ . - FlIn
: : N E | stampSliderSensorMovedin value’ change time 21 Semi-auto ¥ |[[Aborts ¥
] [e L1 Ser v |[Aborts »
: g 09 ~ [[aborts ~ |2
Sy pEEEEEEEEE -',‘ glStampSliderSens: e’ ch 11 Semi-auto v | [Abortz. |4
Kranmodul :
) = Stamp_Error MainApp’ 1
Kran [Wandp | T
; = MainApp. 1
3 - Stamp_Error_Waiting_Time MainApp ¥
Modellierung im Weg-Zeit- Testfallausfiihrung und Testreport
Diagramm

‘ ‘ ‘ § ‘ ‘ Alie zukiappen Zukiappen sdlgraich Alie aufiappen

JE —
NEE

Erfolgreich beendet

——

Abbildung 20: ZuMaTra-Vorgehensweise

Die Vorgehensweise zum Test von Fehlerbehandlungsroutinen von Maschinen und Anlagen
umfasst 4 Schritte. Zunachst wird die Maschine in Funktionseinheiten aufgeteilt (Experten-
Know-How, keine zusatzliche Unterstiitzung durch ZuMaTra). Fir jede Funktionseinheit wird
anschlie®end das Verhalten modelliert, aus welchem die Testfalle generiert werden. Damit die
Testfalle moglichst automatisiert durchgefiihrt werden kénnen, muss anschlieend eine Ta-
belle vervollstandigt werden, in welcher die Angaben zur Ausfihrung der Testfalle erganzt
werden mussen. Dariiber hinaus kénnen die Testfalle nach Kritikalitat priorisiert werden. Auf
Basis der Tabelle werden die Testfalle generiert und kénnen mit PLCopen XML in die Pro-
grammierumgebung zur Ausflihrung importiert werden.

Die Testfalle werden auf Basis des modellierten Verhaltens generiert und berlcksichtigen Zu-
sammenhange zwischen den verschiedenen modellierten Komponenten in einem Diagramm.
Die Aufteilung der Einheiten sollte sich daher mdglichst an dem Verhalten der Maschine ori-
entieren. Fir die Ubersichtlichkeit sollte darauf geachtet werden, dass die Einheiten nicht zu
groRR gewanhlt werden, da sonst die Ubersichtlichkeit bei der Modellierung verloren geht.

Fir die Anwendung der Vorgehensweise sei insbesondere auf den Leitfaden verwiesen (siehe
Anhang CD: FMEA Leitfaden).

25

2 Lésungsweg zur Erreichung des Forschungsziels

2.4.1 Modellierungsverfahren fiir Komponenten (Abbildung 20, Nr. 1)

2.4.1.1 Modellierung im Weg-Zeit-Diagramm

Das Verhalten der Maschine wird bei der ZuMaTra-Vorgehensweise mit Weg-Zeit-Diagram-
men modelliert. Dabei fokussiert werden die Sensorvariablen, welche den Zustand der Ma-
schine abbilden.

Das Weg-Zeit-Diagramm ist nach der UML 2.0 ein Interaktionsdiagramm. Das Diagramm wird
durch ,Lifelines, welche bestimmte Objekte reprasentieren und deren Zustandsinvarianten
(,State Invariants®), welche einen bestimmten Zustand der ,Lifeline” reprasentieren, struktu-
riert. Das Verhalten wird durch die Anderung der Zustande Uber die horizontale Zeit-Achse
modelliert. Weitere Elemente wie Nachrichten (,Messages®) und Zeitintervalle (,Duration In-
terval®) bieten die Mdglichkeit einer Modellierung von Interaktionen zwischen den ,Lifelines®
und von Zeitabschnitten.

«SensorValueLifeline» | «controlValueLifeline» -
Lifeline 1 ikl /| Lifeline ‘ i

\

Messages :
Duration
< (asynchSignal)
Inverval
! _{1.39) 1,/

Bool

E
<}
b=
2 g 7 I 1
3 -
Bl £ , {1.3s) _ ,
E 8 I > < 1
v
e | .
S |IB «sensorValue» / IntervalConstraint
% % Statelnvariant 8-
el = (5500 .. 6000}
.o
= |H
(%] 7]

Abbildung 21: Das Weg-Zeit-Diagramm mit den Modellierungselementen

Das Weg-Zeit-Diagramm wurde im Rahmen des Projekt durch Profilierung angepasst (siehe
Anhang Abbildung 38). Bei ZuMaTra ist das Weg-Zeit-Diagramm die Abbildung des Gutver-
haltens einer Maschine und bildet die Grundlage fir die Testfallgenerierung. Ein Beispiel ist in
Abbildung 21 dargestellt. Die einzelnen Elemente werden in Tabelle 2 ndher beschrieben. Bei
der Definition der ,Statelnvariants” (siehe Abbildung 21 und Tabelle 2) wurde auf die Einhal-
tung der Anforderung A3 geachtet. Durch die Definition einer ,Statelnvariant” nach Wert, kén-
nen beliebig viele bzw. wenige Invarianten fiir eine Sensorvariable definiert werden.

Tabelle 2: Elemente des Weg-Zeit-Diagrammes zur Beschreibung des Gut-Verhaltens.

Element Notation Beschreibung

«SensorValue " <Name>: Komponente, die abgebildet wird.
o

Lifeline» Lifeline 'V>
é\; Beschreibung: Kann beliebig gewahlt werden
E und dient der Aufteilung in sinnvolle Einheiten.
z Eine Lifeline kann einen oder mehrere Sensoren

abbilden.

26

2 Lésungsweg zur Erreichung des Forschungsziels

«sensorValue» State <Variable>: Bezeichner der Sensorvariable
Invariant

<VisibleName>: Sichtbarer Name flr ein bes-
seres Verstandnis und gréRere Ubersichtlichkeit

<Value>: Konkreter Wert, den der Sensor auf
diesem State Invariant annimmt.

Fir einen don’t care Zustand kann , * “ eingeflgt
werden.

Timeline-Points ,®“ unterstitzen die Modellie-
rung des Verhaltens und markieren einen Zu-
standswechsel bzw. Beginn und Ende wichtiger
Abschnitte.

«ControlValue <Name> <Name>: Konkreter Bezeichner

Lifeline» Lifeline
Beschreibung: Modellierung von weiteren be-
liebigen Variablen, die nicht das konkrete Ver-
halten der Funktionseinheit abbilden, sondern
auf das Verhalten Einfluss nehmen. Z.B. Be-
triebsart oder andere HMI-Variablen.

Duration Interval Beschreibung: Zeitintervall zwischen zwei ver-
{0._.. 15}| schiedenen Punkten bzw. Zustédnden und Zu-
standswechseln.

Interval Beschreibung: Intervall bzw. Toleranz fur ei-
nen bestimmten Sensorwert (State Invariant) fur
den modellierten Zeitraum zwischen zwei Punk-
ten (einem Zustand).

Constraint

{1..2}

Es konnen auch Variablen verwendet werden,
auf welche von dem Testfall zugegriffen wird.

Bsp.: {Stamp.MinValue .. Stamp.MaxValue}

«And» Beschreibung: Message, um die Abhangigkeit

zweier Zustandswechsel zu modellieren.
Message
&

2 Lésungsweg zur Erreichung des Forschungsziels

«|IECMessage»
Message

(asynchSignal)

BN

<Value>: Wert zum Zeitpunkt, an dem die Mes-
sage gesendet wird.

Diese Arten von Messages werden von einer
ControlValue gesendet. Die Variable wird als
Vorbedingung fir die folgenden Zustandswech-
sel miteinbezogen.

2.4.2 Automatische Testfallgenerierung (Abbildung 20, Nr. 2)

Die Testfalle zum Test von Fehlerbehandlungsroutinen simulieren stets eine Abweichung des
Gutverhaltens. Eine Abweichung vom Gutverhalten kann mehrere Formen annehmen, welche
im folgendem im Detail aufgelistet werden. Die Fehleroperatoren entsprechen dabei genau
den nach Randbedingung RB 3.2 definierten Fehlererkennungsmechanismen und erfiillen da-

mit Anforderung A6.

Die Fehleroperatoren werden automatisch auf das Weg-Zeit-Diagramm angewandt, wenn die
Voraussetzungen fiir ihre Anwendung vom Modell gegeben sind, womit Anforderung A4 und
A7 erfiillt werden. Durch die automatische Generierung wird auch der erste Teil der Anforde-
rung A1 einer weitgehend automatischen Testfallerstellung erflillt.

Tabelle 3: Fehleroperatoren fiir die Testfallgenerierung.

Element Notation Beschreibung
Zufalliger Zu- Es wird keine Zustandsanderung erwartet, es taucht
standswechsel jedoch eine auf.

Regeln fiir die Modellierung:

E— Ein konstanter Abschnitt auf der Lifeline ist gegeben.

Anpassungsmoglichkeiten:

In der Testtabelle kann der Zeitpunkt der Fehlerinjek-

tion durch Veranderung der Precondition (Location)

konkret bestimmt werden.
Fehlender Zu- Nach Zustand x0 wird Zustand x1 innerhalb des spe-
standswechsel 1 zifizierten Zeitintervalls erwartet. Das Signal des Sen-
(StateChange {0 .. 1s} sors kommt jedoch nicht. Der Testfall Uberschreibt das
Block) . < Sensorsignal.

Regeln fiir die Modellierung:

x0 x1 Definierter Zustand (mit Zeit) x0, von dem aus das

Zeitintervall startet und beim zweiten Zustand x1 mit
Angabe einer maximalen Zeit endet.

28

2 Lésungsweg zur Erreichung des Forschungsziels

Fehlender Zu-
standswechsel 2

Nach Zustand x0 wird Zustand x1 innerhalb des spe-
zifizierten Zeitintervalls erwartet. Der Zustand halt je-

(StateChange {0.. s} doch langer als erwartet.
BlockConstant)
Regeln fiir die Modellierung:
x0 x1 Definierter Zustand (mit Angabe der maximalen Zeit),
von dem aus das Zeitintervall startet und bei zweitem
Zustand x1 nach einer maximalen Dauer endet.
Zu friher Zu- Fir einen Zustandswechsel von x0 nach Zustand x1
standswechsel 1 wird eine bestimmte Mindestzeit erwartet, der Wech-
(StateChange {0,5 .. 1s} sel geht aber schneller als gedacht.
Force) «—
Regeln fiir die Modellierung:
Definierter Zustand (Zeit), von dem aus das Zeitinter-
x0 x1 vall mit der Angabe einer Mindestzeit > 0 startet und

bei zweitem Zustand x1 endet.

Zu friher Zu-
standswechsel 2
(StateChange
ForceConst)

Die Dauer des Zustands x0 wird fiir eine bestimmte
Zeit erwartet, bricht jedoch friiher ab als erwartet.

Regeln fiir die Modellierung:

Definierter Zustand x0 (Zeit), von dem aus das Zeitin-
tervall startet und eine minimale Dauer angegeben ist.

Verletzung eines
gultigen Intervalls

Fir einen Sensorzustand wird ein gultiges Intervall an-
gegeben, dieses wird jedoch Uber- oder unterschrit-
ten.

Regeln fiir die Modellierung:

Angabe eines IntervalConstraint.

Bei Zustands-
wechsel erfolgt
kein synchroner
Zustandswechsel
auf spezifizierter
Lifeline.

Bei einem Sensorsignal wird zwingend ein anderes
Sensorsignal erwartet.

Regeln fiir die Modellierung:

Verknupfung des abhangigen Signals mit eine Mes-
sage mit ,&".

Ein Zustand auf ei-
ner Lifeline zu ei-
nem bestimmten
Zeitpunkt ent-
spricht nicht dem
erwarteten Zu-
stand.

Bei einem Zustand wird in jedem Fall ein anderer Zu-
stand erwartet.

Regeln fiir die Modellierung:

Modellierung einer ,&“-Message.

29

2 Lésungsweg zur Erreichung des Forschungsziels

Sammelfehler: Nach einem Zeitintervall werden synchron zwei Zu-

Kein Zustands-

standswechsel erwartet, diese kommen aber nicht.

wechsel 2 Regeln fiir die Modellierung:

nach einem Ze.'tm' Modellierung eines Zeitintervalls mit einem Zustands-
tervall auf zwei : p

Lifelines wechsel und einer ,&“-Message.

Legende: === Gutverhalten, == |njizierter Fehler, == (Geblocktes Signal

Der Anwender hat die Moglichkeit die Fehleroperatoren, welche auf das Weg-Zeit-Diagramm
angewandt werden sollen, auszuwahlen. Nach der Auswahl wird eine Testtabelle, bei der jede
Zeile fur einen Testfall steht, generiert. Der Aufbau der Tabelle des automatisch generierten
Teils (Tabelle 3) ist wie folgt:

Die Vorbedingung (Precondition) gibt den Zustand an, bei der die Vorbedingung fur
den Testfall als erflillt gilt. Die Locations lassen sich direkt im Weg-Zeit-Diagramm zu-
rickverfolgen und sind dort dargestellt.

Die Spalte Lifeline gibt an, welche ,Lifeline“ im Zentrum des Tests steht.
Die Spalte FI Code zeigt an, welche Sensorvariable wie Uberschrieben wird.

In der Spalte FI Injection Time wird angegeben, wann die Fehlerinjektion stattfindet.
Bei ,StateChangeBlock® ist dies beispielsweise standardmaRig der Zeitpunkt, bei dem
das Gutverhalten des Sensors detektiert wird (Bsp. ,Stamp Filled* wird erwartet, kommt
im Ablauf auch entsprechend, wird aber geblockt). Bei Angabe einer Zahl ist die Zeit
ab Erreichen der Vorbedingung gemeint.

Der Time Constraint gibt an, wie lange die Reaktion dauern darf (Differenz zur ,Fl In-
jection Time*).

30

2 Lésungsweg zur Erreichung des Forschungsziels

TC Nr Precondition Life Line TC Type FI Code
0 L1 Slider Pos [StateChangeBlock| StampSliderSensorMovedin := FALSE | ¢
1 L3 Stamp Pos|StateChangeBlock StamplLowered := FALSE
2 L4 Stamp Pos|StateChangeBlock StampUp := FALSE
3 L6 Slider Pos [StateChangeBlock|StampSliderSensorMovedOut := FALSE| Sta

Fl Injection Time Time Constraint Init Abort

StampSliderSensorMovedIn value change time 2,1
StampLowered value change time 1,1
StampUp value change time 0,9
StampSliderSensorMovedOut value change time 1,1
Legende rt Expected reaction Expected reaction Applikation to test Priority
Automatische -l ~ | Fault reaction expression MainApp 1

Generierung aus

Weg-Zeit-Diagramm + | Fault reaction expression MainApp

Erganzung fur
Testfallgenerierung

| 1
Manuelle \ ~ | Fault reaction expression MainApp 1
\ 1

~ | Fault reaction expression MainApp

Abbildung 22: Testtabelle zur Vervollstandigung der Testfélle

In der Testtabelle miissen auBerdem die Informationen, die nach den Randbedingungen RB
1, RB 2 und RB 4 definierten notwendigen Operationen fir die Testdurchflihrung erganzt wer-
den. Dies sind die Init-, EvaluateReaction- und Abort-Funktionen. Dies erfolgt durch Codeab-
schnitte, die im Editor definiert und in der Testtabelle referenziert werden kénnen.

Hierflr sind folgende Spalten in der Testtabelle vorgesehen:

o [nit: Referenz auf eine vordefinierte Funktion. Falls eine mehrzyklische Ausfliihrung not-
wendig ist, soll in dem Codeschnipsel die Variable OK fir die Ausflihrungskontrolle
verwendet werden. Solange ,OK = FALSE", wird das Codeschnipsel aufgerufen. Die
Testfallausflihrung wird pausiert und erst dann fortgesetzt, wenn ,OK = TRUE" wird.
Namens-Konflikte mit der Variable OK sind ausgeschlossen.

Bsp.: Testlnit(); OK:= TestInit.xDone;

o Abort: Referenz auf eine vordefinierte Funktion. Falls eine mehrzyklische Ausflihrung
notwendig ist, soll die Variable OK fur die Ausfihrungskontrolle in dem Codeschnipsel
verwendet werden. Solange ,OK = FALSE", wird das Codeschnipsel aufgerufen. Die
Testfallausflihrung wird pausiert und erst dann fortgesetzt, wenn ,OK = TRUE" wird.
Namenskonflikte mit der Variable OK sind ausgeschlossen.

Bsp.: TestResetSemiAuto(); OK.= TestResetSemiAuto.xDone;

o Expected Reaction: Referenz auf eine vordefinierte Funktion. In dem Codeschnipsel
sollen die Variablen PASS und/oder FAIL verwendet werden. Das Codeschnipsel wird
wahrend der Fehlerinjektion ausgeflihrt. Das Ausflihrungsergebnis ist PASS/FAIL oder
noch kein PASS oder FAIL (bei dieser Ausfiihrung wurde nicht PASS oder FAIL ge-
setzt). Bsp.: StopStamp(); PASS:= Stopped;

31

2 Lésungsweg zur Erreichung des Forschungsziels

o PASS - beobachtete Reaktion entspricht der erwarteten (durch das Code-
schnipsel spezifizierten) Reaktion.

o FAIL - beobachtete Reaktion entspricht der erwarteten (durch das Codeschnip-
sel spezifizierten) Reaktion nicht.

o FExpected Alarm: Hier wird eine Boolean Expression erwartet. Wird kein besonderer
Alarm bei einem bestimmten Testfall erwartet, kann hier auch TRUE angegeben wer-
den.

o Application: Dies ist das Programm, welches getestet werden soll. Das Programm
muss in jedem Fall angegeben werden.

e Priority: Durch -1 werden Testfalle deaktiviert. Alle anderen Testfalle werden aufstei-
gend, beginnend mit der 0, abgearbeitet. Dies gibt dem Anwender die Mdglichkeit, die
Testfalle zu priorisieren.

2.4.2.1 Risikobasierte Testfallselektion

Da die Spezifikation nach der Anforderungsanalyse und Anforderung A8 als optionales Ele-
ment in der ZuMaTra-Vorgehensweise enthalten ist, wurde ein Leitfaden fir die Einstufung der
Risikoprioritat von Fehlern, welche von der Steuerungssoftware behandelt werden missen,
entworfen (siehe Anhang CD: FMEA Leitfaden). Die Einstufung erfolgt hierbei in Form einer
Prozess-Failure Mode and Effects Analysis.

Der Aufbau orientiert sich hierbei an der VDA 4.2 ,Sicherung der Qualitat vor Serieneinsatz
System FMEA" nach Bertsche [VDA4.2]. Ein Beispiel fir eine derartige FMEA ist in Abbildung
23 dargestellt und wird im Leitfaden ausfihrlicher erlautert.

Wurde eine FMEA durchgeflihrt, kann die Prioritat der Testfalle systematisch festgelegt wer-
den, indem in der Testtabelle das Feld Priority verandert wird. Bei einer hohen Risikoprioritats-
zahl (wie in der Abbildung 23 z.B. 90), wird eine hohe Prioritat angegeben (z.B. 1). Die Testfalle
werden bei der Abarbeitung nach Prioritat geordnet (von 1 aufsteigend).

32

2 Lésungsweg zur Erreichung des Forschungsziels

Type/Model/Fabrication/Load; System Structure; System Element;
Iltem Code, Responsible; Company; Created; Modified
Potential S | Potential failure Potential Preventive | O| Detection RPN
effect(s) of mode(s) Causes actions Actions
failure
System element: Sortierstrecke
Function: sortieren
Werkstlick niO |8 | Fehler Falsche Regel- 3 | Endlagensensor- 72
Endlagensensor Auswahl mafige Uberwachung
- Fehler Sensor, Wartung
ausstofRen Betriebs-
> - Keine bedingungen,
korrekte Abnutzung
Sortierung WS
Sensorfehler optisch 3| Zeitmessung 3 |72
-> Keine WS ab Pos1 und
Erkennung WS 2
-> - keine
korrekte
Sortierung WS
Sicherheits- 10 | Kein Anhalten bei Leiter defekt | Regel- 1 [Wartung 9 |90
risiko Nothalt gedrickt mafige
Wartung

Abbildung 23: Beispiel fur eine FMEA (ausfiihrlichere Beschreibung siehe Anhang CD:
FMEA Leitfaden)

2.4.3 Automatisches Echtzeit-Testfallausfiihrungsverfahren (Abbildung 20, Nr. 3)

Neben dem tatsachlichen Testobjekt, dem sogenannten ,System Under Test* (SUT), werden
zwei weitere Testkomponenten (TestComponent) fur die Testdurchfihrung bendtigt. Dies ist
zum einen das Testsystem und zum anderen die Komponente, gegen die getestet wird.

Die Testfalle fir den Test von Fehlerbehandlungen durch Fehlerinjektionen haben den folgen-
den Aufbau:

TestComponent — Testsystem mit Testbausteinen: Das Testsystem setzt sich durch
den CODESYS Test Manager und den generierten Testcode aus dem AlS-Editor zu-
sammen. Der Test Manager generiert zusatzlich Code fiir die Ausfiihrung und das Log-
ging der Testfalle, der Testcode wird anwendungsspezifisch erstellt, liegt als POU im
Projekt vor und injiziert den tatsachlichen Fehler.

SUT — Steuerungscode: Fur den Test der Applikation werden einige Funktionen dieser
genutzt und es werden vordefinierte Variablen erwartet, die beobachtet und geloggt
werden. Zum einen sind dies Funktionen wie die Grundstellungsfahrt oder Abbruch-
routinen und zum anderen die Beobachtung der Fehlerreaktionen.

TestComponent — Reale HW, Maschine: Falls eine Simulation der Maschinen vorhan-
den ist, kann diese genutzt werden, ansonsten ist eine Ausfiihrung der Testfalle an der
realen Hardware mit dem Test Manager méglich.

In Abbildung 24 werden zunachst die Prepare-Funktionen durch den CODESYS Testma-
nager durchgefihrt. Die Prepare-Funktionen werden im Testmanager konfiguriert und flih-
ren Aktionen wie die Generierung des Codes, der flr die Ausfiihrung der Testfalle und die
Dokumentation dieser notwendig ist, durch.

33

2 Lésungsweg zur Erreichung des Forschungsziels

Da fir die Ausflihrung der Fehlerinjektion ein definierter Zustand gegeben sein soll, wird
zu Beginn eine Initialisierung durchgefihrt. Hier soll eine Unterscheidung zwischen auto-
matischer und semi-automatischer Initialisierung gemacht werden. Bei der automatischen
Initialisierung wird davon ausgegangen, dass das Programm bei Start einen Initialisie-
rungsvorgang durchfiihrt. Bei der semi-automatischen Initialisierung wird eine Freigabe
durch den Operator erwartet. So hat dieser ggf. Zeit MalRnahmen fir die korrekte Initiali-
sierung bzw. Grundstellungsfahrt zu ergreifen. Wurde die Initialisierung abgeschlossen,
wird das Programm durchlaufen, bis die Vorbedingung furr die Fehlerinjektion gegeben ist.
Sobald diese erkannt wird, wird der Fehler injiziert und der weitere Ablauf beobachtet. Wird
die korrekte Fehlermeldung und die korrekte Fehlerbehandlung eingeleitet, wird der Test-
fall mit dem Ergebnis ,erfolgreich“ beendet. Uberschreitet die erwartete Zeit einen Wert,
wird der Testfall abgebrochen. Hierflr wird eine Abbruchroutine benétigt, die von dem An-
wender definiert wird. Auch hier soll die Mdglichkeit gegeben werden, eine automatische
oder eine semi-automatische Abbruchroutine zu starten. Bei der Automatischen wird ledig-
lich eine Methode oder Variable aus dem Programm getriggert, bei der semi-automati-
schen Ausflhrung wird eine Bestatigung erwartet. In Abbildung 24 ist ein semi-automati-
scher Testfall dargestellt.

<<TestComponent>> <<SUT>> <<TestComponent>> <<TestComponent>> <<SUT>> <<TestComponent>>
Testsystem mit Testbausteinen || Steuerungscode Reale HW, Anlage Testsystem mit Testbausteinen || Steuerungscode Reale HW, Anlage
1 : M " : ‘
- i ~ —_ .
= Prepare - Prepare Wa(i)ticr cknowledge())
8 nit) S [—— Y
= lc——InitDone__ _ _ = l«——InitDone_ _ _ _
c Evaluate c Evaluate
=D . L =D .
86T E condition() 06T S condition()
>80 >80
- Fault - Fault
™ W ™ W .
) tationError ") >Stat|onError
g S ErmorReaction,, 3 = ErmorReaction,
= = Evaluate e _ErrorReaction _ = L Evaluate - _ErrorReaction _
z = jeaction() z S jeaction()
7] \" (7] -
@ (8]
= Abort() = Abort() >
< <
e o241 B
c TC1_ TC1_
2 Completion() = Completion()
] -—
. amw 3]
wn } L] o ||
o ! T 0 ! T !
o ! 1 ! | 1

Abbildung 24: Aufbau der Testfalle (links) und semi-automatische Ausfiithrung der
Testfélle (rechts).

2.4.3.1 Dokumentation der Testfalle

Um die Anforderung A5 zu erfiillen, wurde Uber die Dokumentation, ob der Test erfolgreich
war, noch eine spezifische Einordnung, warum ein Testfall ggf. nicht erfolgreich war, in der
Dokumentation erganzt. Die Testfalle geben nach Ausfiihrung folgendem Schema Ruckmel-

dung Uber deren Status:

Ausgabe Bedeutung

Error detected: TRUE/ FALSE Bei TRUE wurde der Alarm detektiert

Error-Code: 1 Die Vorbedingung Teil 1 wurde nicht erreicht

Error- Code: 2 Die Vorbedingung (FI injection Time) wurde nicht
erreicht

34

2 Lésungsweg zur Erreichung des Forschungsziels

Error- Code: 3 Die Fehlerreaktion wurde nicht beobachtet

Error- Code: 4 Zeituberschreitung fur Init

AbortErrorDetected (5) Der Abort wurde nicht in der vorgegebenen Zeit
ausgefuhrt

Faultreaction: PASS EvaluateReaction war erfolgreich

Faultreaction: FAIL EvaluateReaction war nicht erfolgreich

Faultreaction: TIMEOUT EvaluateReaction war wegen der Zeitiberschrei-
tung nicht erfolgreich

Abbildung 25: Dokumentation der Testfille

2.5 Software-Funktionsmuster als Basis der Evaluierung

2.5.1 Konzeption und Implementierung des Funktionsmusters

Zur Anwendung der Vorgehensweise kdnnen unterstitzende Werkzeuge eine erhebliche Effi-
zienzsteigerung bewirken oder sogar erst ermoglichen. Vor allem im Bereich der Erstellung
der Modelle, wie auch bei der Testfallgenerierung ist eine Unterstiitzung sinnvoll. Dazu mus-
sen zunachst die Aktivitaten in Bezug auf mégliche Effizienzsteigerungen analysiert werden.
AnschlieBend kénnen diese bezlglich ihrer Machbarkeit und des Aufwands zur Umsetzung
bewertet und ausgewahlt werden.

Im Folgenden wird die — auf Basis dieser Anforderungen erstellte — Werkzeugunterstiitzung
beschrieben. Zunachst werden in Kapitel 2.5.2 die einzelnen Werkzeugfunktionen identifiziert
und beschrieben. AnschlieRend wird das Konzept der Werkzeugunterstiitzung — im Folgenden
als ,ZuMaTra-Plugin® bezeichnet — in Kapitel 2.5.3 erlautert und die Umsetzung in Kapitel 2.5.6
beschrieben.

2.5.2 Identifikation und Beschreibung der Werkzeugfunktionen

Ziel des ZuMaTra-Plugins ist die Effizienzsteigerung im Bereich der Testfallerstellung bzw. -
generierung. Fokus des Software-Funktionsmusters ist es, die ZuMaTra-Vorgehensweise ef-
fizient und intuitiv verstandlich zu unterstitzen.

Ein Uberblick tber die hierzu zu realisierenden Funktionalitaten ist in Abbildung 26 aufgezeigt.
Die Hauptfunktionalitaten des ZuMaTra-Plugins sind folgende:

Realisierung der ZuMaTra-Vorgehensweise: Zur Unterstlitzung der ZuMaTra-Vorgehens-
weise mussen die unter Kapitel 2.4 beschriebenen Schritte unterstitzt werden. Der Nutzer des
Editors muss hierzu die Modellierungselemente des Weg-Zeit-Diagramms modellieren und die
Testtabelle spezifizieren kénnen. Eine anschlieRende Testfallgenerierung und ebenso die
Ausflihrung der Testfalle muss adaquat unterstitzt werden.

Realisierung von Editor-Funktionen: Zur Effizienzsteigerung bei der ZuMaTra-Vorgehens-
weise mussen Standard-Editor-Funktionalitaten bereitgestellt werden. Durch das ZuMaTra-
Plugin muss die grafische Erstellung und Parametrierung der Elemente moglich sein. Um Mo-
dellierungsprojekte zu einem Zeitpunkt unterbrechen und spater wieder fortsetzen zu kénnen,
mussen Modelle gespeichert und geladen werden kénnen.

Einbindung in die Werkzeugkette: Um den Editor in die unternehmensspezifische Werkzeug-
kette integrieren zu kénnen, sind entsprechende Austauschformate anzubieten. Hierzu wird
fur die Ubergabe der Testfalle an eine Programmierumgebung fir die Testausfihrung das
PLCopen XML-Format gewahlt. Des Weiteren soll zu Dokumentationszwecken der Testreport
so ausfuhrlich wie mdglich erfolgen. Hierflir wurde eine sinfo-Variable angelegt, die durch den
CODESYS-Testmanager automatisch ausgewertet, ggf. aber auch manuell abgefragt werden
kann.

35

2 Lésungsweg zur Erreichung des Forschungsziels

ZuMaTra-Plugin Programmierumgebung
Dekompositionlgtrjmiystems Tesﬂallgenerierung PLCopen XML (z-B- CODESYS)
S = ST “'” — =
] 2 Th > Import Testfille
| HEAE
t Kranenodl :
= =
©
% Modellierung im Weg-Zeit-
Diagramm
N ’ Ausfiihrung
= automatische und semi-
automatische Testfélle
| Datenmodell der Elemente |
g Visualisierung und
5 | Import-Funktionen | Dokumentation
E Grafische Erstellung und s
§ Parametrierung der Elemente
S
| Automatische Testgenerierung |

Abbildung 26: Uberblick iiber das ZuMaTra-Plugin

2.5.3 Aufbau des Editors

Zur Realisierung der zuvor identifizierten Funktionalitdten wird im Folgenden das Konzept des
ZuMaTra-Plugins erlautert.

Der Aufbau des ZuMaTra-Plugins ist in Abbildung 27 dargestellt. Neben einer Symbolleiste
zur Erstellung der ZuMaTra-Modellierungselemente, in welcher der Nutzer des Editors die zu
erstellenden Elemente auswahlen kann, gibt eine Baumansicht einen Uberblick iiber die Ele-
mente des Modells. Innerhalb des Diagrammbereichs kdnnen somit Elemente im Zeichenbe-
reich platziert und im Eigenschaftsbereich bearbeitet werden.

36

2 Lésungsweg zur Erreichung des Forschungsziels

m Timing Sequence TestCase Table ZuMaTra Settinﬁs

EJ‘I 11 E]_ | ey *\ I o
d 1 4 Y
Add Add Add Add Add Add Add Add
Life Line Control Value State Invariant Timeline-Point = Duration Constraint Inverval Constraint IEC-Message Multi-Message element TestCase Table
ZuMaTra Timing Sequence @ Timing Sequence_table @ ‘ I
I Rules o o~ m <t n © ~ .
PlcOpen sl 8| § 5 5 § g s =
4 Timing Diagrams © ® ® "] " " 5]
Timing Seque S 8 S 5 5 5 5 8
4 TestCase Tables I_g) 22_{
Timing Sequerlj If} = | ;0 -1 ! I
4 Tnit 5 Py Py !
Man.ual _g * =
Semi-auto e
Auto
4 Abort 5 1.11
Abortl A ﬁ") ('Si
4 Expected reaction [B%] g
None % N §2
[FALSE @@
[‘ ' E 0. 1s 105..085) ! State].nvariant Element :
B . ; 1 Variable Filled
4 Diagrams g .
/ZuMaTra /l S Visible Name: FAISE
Timing Sequil B Lowered — Value: FALSE
Timing Sequll i
3
= 1
: Eigen-
2 .
&
& Ji5500... 1
: ~ .| schafts-
]
Objekt- [k
o 1 o~ m -t AO
c [[[<
S5 § § ¢ Ze bereich
mm 3 8 3 3 3 I+ v I+
] 1 5 5 5 5 5 4 -

Abbildung 27: Ubersicht ZuMaTra-Plugin

2.5.4 Codeanalyse im Editor

Fir die Codeanalyse wird das ZuMaTra-Diagramm im Editor bereitgestellt. Eine Schnittstelle
fur den Import von PLCopen XML-Dateien ermoglicht das Importieren von Projekten bezie-
hungsweise Funktionsbausteinen aus TwinCAT und CODESYS.

Die Funktionsbausteine knnen dann im Objektbaum ausgewahlt und direkt als Text angezeigt

werden. Zur Generierung des Kontrollflusses werden in der Mentileiste entsprechende Buttons
dargestellt.

37

2 Lésungsweg zur Erreichung des Forschungsziels

/. AIs-Editor [E=E
B vain Timing ZuMaTra Settings &
Z 4 W
B E c KH 0 F F aﬁad\;s:‘:::lle selec ‘Ryule(s) /
H I ZuMaTra | zoMaTra (]
copesys TWinCAT : . ——

4 PRG.FB1.FB2.FB3 v project AST: [TesTRRC < [CFG: [TESTPR(~ ICFG: [TESTPR - Complesity: -~ ErorPath: py
“ pou AST | CFG | iCFG [Selected Source Code | Project Souce Code | Applied R

s
' PRG_F81_FB2_ 783 w1 project - CODESYS BTN TESTPROGRAM1
- POUInterface PROGRAM TESTPROGRAM1
Date peabeten awcht Bogkt Erstelen Orine Debyg Took Eenster Hife 4 Body

T

DFE &« X MY ab 4% % o FBTESTL

Project.xml

>

Abbildung 28: PLCopen XML-Import (CODESYS-/TwinCAT3-Format) in das ZuMaTra-
Plugin

Im Objektbaum kénnen die Regeln zur Uberpriifung des Kontrollflusses angegeben werden.
Per Rechtsklick kann eine neue Regel eingegeben werden. Im Editor steht dann das im Kon-
zept entworfene Template mit entsprechenden Feldern zur Verfligung:

e Target: Modell, das untersucht werden soll (CFG oder iCFG)
e Paths: Pfade die untersucht werden sollen
¢ PathCondition: Bedingung die tberpriift werden soll

2.5.5 Das Weg-Zeit-Diagramm, die Testfallgenerierung und Testtabelle im Editor

Um die Modellierung im Editor moglichst effizient und verstandlich zu gestalten, sollen die
ZuMaTra-Modellierungselemente moglichst exakt im ZuMaTra-Plugin abgebildet werden. Dies
beinhaltet zum einen die exakte grafische Darstellung der Modellierungselemente, zum ande-
ren die Ermoéglichung der Spezifikation der Inhalte der Modellierungselemente. Mehrere Bei-
spiele flr diese Umsetzung kénnen in Abbildung 32 oder Abbildung 36 bzw. im Leitfaden nach-
vollzogen werden.

Die Testfallgenerierung wurde entsprechend der in Kapitel 2.4.2 definierten Fehleroperatoren
umgesetzt. Die Vorbedingung wird aus den Locations — also dem modellierten Verlauf — des
Modells extrahiert.

Die manuell erganzten Informationen in der Testtabelle werden zusammen mit den aus dem
Weg-Zeit-Diagramm gewonnenen Informationen in ein PLCopen XML Ubersetzt.

2.5.6 Umsetzung

Die Realisierung des ZuMaTra-Plugins erfolgte unter Verwendung der Programmiersprache
C# .NET in der Entwicklungsumgebung Microsoft Visual Studio. Der Leitfaden sowie ein In-
staller fir das ZuMaTra-Plugin kénnen unter der URL http://zumatra.ais.mw.tum.de/ bezogen
werden. Als Basis fir die Implementierung des ZuMaTra-Plugins wurde das in Abbildung 38
und Tabelle 2 vorgestellte Metamodell hinzugezogen.

2.6 Evaluierung der Konzepte

Um einerseits die Machbarkeit und andererseits die Anwendbarkeit der ZuMaTra-Codeana-
lyse, Modellierung und Testgenerierung und -ausflihrung flr Industriebeispiele zu tberprifen,
38

2 Lésungsweg zur Erreichung des Forschungsziels

wurden ein Anwendungsbeispiel aus der Industrie im Rahmen einer Machbarkeitsstudie und
ein Anwendungsbeispiel im Rahmen eines Workshops gemeinsam mit den Teilnehmern erar-
beitet. Die Codeanalyse wurde anhand einiger Bausteine mit begrenzter Komplexitat evaluiert.

2.6.1 Evaluierung der Codeanalyse

Die Regeln wurden entsprechend Anforderung A9 entworfen und an einigen Beispielen getes-
tet, wie beispielsweise dem hier dargestellten:

PROGRAM testRule CASE status OF
VAR 1, 5:
i1: INT; varb := varf;
i2: INT; actor3 := TRUE;
i3: INT; errorStatus:=3;
END_VAR 2:
var1 := var2+senspr1; var3 := var1 + var2 + sensor4;
var2 := sensor2*5 + 20; actor1 := FALSE;
IF (sensor3 > defaultValue) THEN actor2 := FALSE;
errorStatus:=1; errorStatus:=4;
var3 :=var1 + var2 + sensor4; 10..20:
actor1 := TRUE; var3 := sensor4;
ELSIF (sensor3 < 5) THEN actor1 := FALSE;
errorStatus:=2; 0..11:
actor2 := TRUE; var3 := var2 + sensor4;
END_IF; actor1 := FALSE;
errorStatus:=5;
END_CASE;
var3 := var1 + var2 + sensor4;
actor4 := TRUE;
actor1 := FALSE;
END_PROGRAM

Der Funktionsbaustein wurde per PLCopen XML aus CODESYS exportiert und in das Zu-
MaTra-Plugin importiert (Menl Load PLCopen XML). Durch Auswahl des MenUpunkts ,Gene-
rate AST(s)/ CFG(s)“ werden der abstrakte Syntaxbaum und der Kontrollfluss des Funktions-
bausteins generiert.

In Abbildung 29 ist der Kontrollfluss und die Regellberpriifung der Regel ,errorStatus muss in
jedem moglichen Pfad geschrieben werden® dargestellt. In dem einfachen dargestellten Kon-
trolifluss ist ein Pfad, bei dem diese Regel verletzt wird, rot markiert.

39

2 Lésungsweg zur Erreichung des Forschungsziels

Target: CFG;
Paths: ALL;
PathCondition: W#errorStatus;

o 0 >

Timing ZuMaTra Settings &

ZuMaTra (%]

Sorted list of paths by comp! List of error paths

AST:| TES#PROGRAML ~ (CFG:| TESTPROGRAM1 ~ ICFG:| TESTPROGRAM1 ~ [Complexity : v EmorPath: path 2
CFG | iCFG | Selected Source Code | Project Souce Code | Applied Rules

Target: CFG;

Paths: ALL;
PathCondition: WierrorStatus;

Name : Rule 2.1

m

Target: CFG;
Paths: WierrorStatus;
PathCondition: IFCOND#sensor3<5;
Name : Rule 2.2
Target: CFG;
Paths: IFCOND#sensor3<5;
PathCondition: W#errorStatus;
PicOpen
4 PRG_FB1_FB2_FB3.project
4 POUs
TESTPROGRAM1
4 POUInterface
4 ReturnType

-
2N
[

3

4 LocalVars
fotestlinstance
fbtest2instance
fbtest3instance
var2
sensprl
varl
var3
vars
errorStatus

4 Diagrams
/ZuMaTra

Abbildung 29: Regel 1 als Beispiel fiir die Regeln im ZuMaTra-Plugin

Der grundsatzliche Nachweis der Machbarkeit konnte durch das Funktionsmuster erbracht
werden. Die Skalierbarkeit der Pfadanalyse und der Umgang mit Komplexitat ist jedoch noch
eine offene Frage, da fir den Funktionsnachweis die Anzahl der Pfade auf 100.000 beschrankt
wurde, was fir aktuelle Anwendungsbeispiele aus der Industrie nicht immer ausreichend ist.
Die Optimierung der Algorithmen zur Pfadanalyse missen daher ggf. verbessert werden oder
sehr hohe Rechenzeiten in Kauf genommen werden.

Neben dem Nachweis fir strukturierten Text konnte in einer Bachelorarbeit der Nachweis der
Machbarkeit fiir Funktionsblockdiagramme erbracht werden [Ta14]. Hier ist hervorzuheben,
dass der Ansatz fiir komplexe Funktionsblockdiagramme erbracht werden konnte, da Funkti-
onsblockdiagramme in der Regel deutlich weniger Verzweigungen im Kontrollfluss aufweisen.

2.6.2 Evaluierung der Vorgehensweise fiir den Test von Fehlerbehandlungsroutinen
an einem Anwendungsbeispiel mit kontinuierlichen Prozessen

2.6.2.1 Das Anwendungsbeispiel Pflasterverarbeitung

Die von Harro Hofliger zur Verfliigung gestellt Maschine fiir die Machbarkeitsstudie ist in Ab-
bildung 30 dargestellt. Zusatzlich wurde ein SoMachinMotion-Programm fiir den Betrieb der

40

2 Lésungsweg zur Erreichung des Forschungsziels

Maschine zur Verfiigung gestellt. Fehler die an der Maschine behandelt werden missen, sind
zum einen Fehler die von den Antrieben kommen, zum anderen die Regelung bzw. die Abwei-
chung von der Tanzerposition bei der Abwicklung und bei der Aufwicklung wie z.B. eine zu
starke Abweichung von der Mittelposition bei verschiedenen Zustdnden — Anlauf, Betrieb,
Stopp, Kalibrierung.

SEED
Abwicklung(1 W . L
Antrieb) . el /. \ ST170
AR e i Aufwicklung
(1 Antrieb)

ST4,
ST02, Pflaster-
Vorzug libergabe.
(1 Antrieb) | (3 Antriebe)

Abbildung 30: Anwendungsbeispiel eines kontinuierlichen Prozesses

2.6.2.2 Vorgehen bei der Machbarkeitsstudie

Nach einer intensiven Analyse des Anwendungsbeispiels wurden diverse Testfalle entworfen,
bzw. die Methodik noch einmal iterativ nach diversen Fehlversuchen angepasst.

Test der Reaktion der Maschine auf Antriebsfehler

Es wurde schnell klar, dass fur den Test der Antriebe ein Entwurf im Weg-Zeit-Diagramm kei-
nen Sinn macht, da auf Applikationsebene lediglich die richtige Konfiguration getestet werden
muss.

Die genaue Fehlermeldung liefert die Diagnose des Antriebsherstellers. Dementsprechend
wurde eine Fehlerursache, die sich fiir die Fehlerinjektion bei Antrieben eignet — der Schlepp-
fehler — identifiziert. Ziel ist es, dass der physikalische Zustand der Maschine mit dem in der
Steuerung identifizierten Zustand nicht abweicht, da es sonst zu gefahrliche Zustdnden kom-
men kann.

In Abbildung 31 sind die fiir die Antriebe entworfenen Testfalle dargestellt. Einzige Vorausset-
zung fur einen sinnvollen Test ist, dass die Antriebe laufen. Demzufolge wird dies als Vorbe-
dingung fir die Testfalle angegeben. Die Anforderung, dass der physikalische Zustand dem
erkannten Zustand in der Steuerung entspricht kann durch die Injektion eines Schleppfehlers,

41

2 Lésungsweg zur Erreichung des Forschungsziels

durch Herabsetzung des Nutzstroms erreicht werden. Dementsprechend ist die Fehlerinjektion
die Herabsetzung des Stroms eines Antriebs (vgl. FI Code Abbildung 31).

Die dargestellten Testfalle wurden erfolgreich an der Maschine erprobt. In einem Testlauf wur-
den 5 von 7 Testfallen erfolgreich durchgefihrt. Danach konnte der Lauf nicht automatisiert
fortgefliihrt werden, da die Maschinenparametrierung durch dem 5. Testlauf nicht mehr korrekt
war und eine Neuparametrierung erforderlich wurde.

42

2 Lésungsweg zur Erreichung des Forschungsziels

IAquoudy uonediddy

wueje pajpadxj

uonleas papadxy

Hoqy Ny

Spo) 4 |dAl D1

[xaxvy3 1=
ANIM3IY Y T SL0LTLS)[» - JwIpuaun)asn S > QoRARY VT SL0LTT DN
T |T¥e1°T80 J0u3sIXy doysQuassey || THOqy || owne-iwag W T SLOLTT DN [sixyuondafupiney YO § < Ao)RPARY Y T SL0LTT DN
[xarxvy3a =
NIMNN 8 T 7L70ST 1S] || « - JIWRUaLNIAs G > AolPARY'S T FL0STT DW
T |1T¥se1T80 Jou3sxy doysiaise THOqy fff cne-lwag "8 T 710STT DW [sxyuondafupiney ¥O § < APojPARY' g T HI0STT DN
[XQDXY ¥3ANNADONIL
1ND3ANA T TL 050 1S]| » - TERWImURALN S > QolPAIRY T TLOE0T DN
T |T¥5e1°T80 Jou3sixy doisQiaisepy || THoqy || one-lwdg 35N'T TL0E0T DW[sixyuondafupiney YO § < APoPRARY T TLOE0T D
XDy s3uawbasiaysue | ; =
17BNZEY TTELTH00 1S]| & - JIWMuUaLnIs S > APoRARY Y T ELF00T DN
T |T¥5e1°180 Jou3sixy dojshiaiseiy || THoqy || one-ludg VT ELP00T DN [sixyuondafupiney YO § < Ao)RARY Y T ELF00T DN
[XQIXY Zauawbasiajsue 1=
1176nZE78 T 217007 1S] | & - JIWIPUaLNIAs S > AolPAIRY'8 T ZLP00T DN
T |T¥5e17180 Jou3sixy doishiaisei || THoqy |l one-lwag "8 T Z1P00T DI [sixyuondalupiney YO § < APo]PARY'G T ZLF00T D
[XaDXV T3uawbasiajsue =
17BNZEY 1200 LS] | & - JIurpuaLn)Iasn S > APoRARY Y T ZLH00T DN
T |T¥5e1°T80 Jou3sixy doishuaisepy || THOqy || one-lwdg W T ZLP00T DN [sxyuondafupney YO § < Ao)RPARY Y T ZLH00T DW
[Xaxv sm 1=
O¥1ING Y T 17200 1S)| o N JIWpUaLN)Is S > APolRARY Y T P1Z00T DN
T |TA5e1180 Jou3sy doisdiaise THoqy |l one-lwas "W T #1Z00T DW [sixyuondafupiney YO § < Ado|RARY Y T 712001 DWW

uoIIpUOIAly

Testfalle fiir den Test von Antriebsfehlern

Abbildung 31

43

2 Lésungsweg zur Erreichung des Forschungsziels

Test der Reglerbausteine

Im Gegensatz zu diskreten Prozessen stellte die Modellierung kontinuierlicher Systeme eine
erheblich héhere Anforderung an die Modellierung im Weg-Zeit-Diagramm. Fir die Regelung
ist lediglich ein Sensorwert — die Tanzerposition — relevant. Dennoch gibt es einige komplexe
Ablaufe zu beachten, welche durch weitere Steuervariablen gesteuert werden. Bei der Analyse
der Bausteine wurden 12 verschiedene Zustande des Reglerbausteins identifiziert, inklusive
Kalibrierung, Wartezustanden, Uberpriifungen der korrekten Position, Start-Zustand, Automa-
tikmodus, etc.

Um verschieden Szenarien, die auch durch Fehlerbehandlungen Uberpriift werden miissen,
abzubilden, kam daher insbesondere das Modellierungselement ,ControlValueLifeline® zum
Einsatz (vgl. Abbildung 32). Weiterhin musste das Modellierungselement ,IntervalConstraint*
angepasst werden, da Anforderungen wie ,es darf bei dem Automatikbetrieb zu einer maxi-
malen Abweichung von 5 % zur Mittelposition kommen* nur durch die Angabe einer Variablen
und nicht durch die Angabe einer festen Zahl ausdriickbar sind. Bei der Durchfiihrung wurde
festgestellt, dass die Vorbedingung teilweise noch zu eng gefasst sind, da die in Abbildung 32
dargestellte Vorbedingung, dass das glltige Intervall innerhalb von 6 Sekunden verlassen
wird, nicht eingehalten werden kann.

Mit einer manuellen Anpassung der Vorbedingung konnten erfolgreich Testfalle durchgefiihrt
werden. Eine weitere Untersuchung mit dem neu definierte ,don’t care* Element (siehe folgen-
der Abschnitt) kénnte das Problem ggf. auch beheben, eine Untersuchung steht hier jedoch
noch aus.

St_170_Aufwi... | [st.170_Aufwi.. SynActive[ST... MC_VirtPlast...

(a]

(-4

o

=

@

(]

®

8 . ; LREA &;:5_ °
" T Tt

Qo

I T 1

Anforderung: Bei Start maximal 6s
bis Mittelposition erreicht ist

Abbildung 32: Modellierung der Soll-Position des Téanzers

Festhalten I3sst sich, dass die grundsatzliche Machbarkeit gezeigt werden konnte. Insbeson-
dere war erkenntlich, dass fiir die Modellierung kontinuierlicher Systeme andere Modellie-
rungselemente wichtig sind, als bei der Modellierung diskreter Prozesse.

Der Nutzen-Faktor eines modellbasierten Ansatzes konnte ebenfalls noch nicht nachgewiesen
werden, da hier vermutlich noch weitere Anpassungen und Nachweise notwendig sind.

2.6.3 Evaluierung der Vorgehensweise fiir den Test von Fehlerbehandlungsroutinen
in einem Workshop an einem Anwendungsbeispiel mit diskreten Prozessen

2.6.3.1 Das Anwendungsbeispiel Trainingsstation

Als Anwendungsbeispiel wurde fiir den Workshop von Bosch die in Abbildung 33 dargestellte
Maschine zur Verfigung gestellt. Weiterhin stand fir das Evaluationsbeispiel ein fertig imple-
mentiertes TwinCat 3-Programm zur Verfligung.

44

2 Lésungsweg zur Erreichung des Forschungsziels

Da entsprechend ohne den CODESYS Test Manager gearbeitet werden musste, wurde wei-
terhin ein Programm fur die Ausflihrung, Visualisierung und Dokumentation erarbeitet, was
einen zusatzlichen Aufwand von ca. einem Tag bedeutete.

| TrainingStation
InletTest PressPart
(kein Ring = Press
vorhanden = TRUE) " up
Part |) | PEE
Present Press | To
ﬁa down = Press Feeder
' T, S In
-' L Gripper
o Bell | Feeder closed
£ ._ = N out
__Jl ; *
e — = PosBox
it S—— T S Side
LeftDirection I RightDirection =& i LiftDown
NPy Ry vy =y =g
. [
Pos yﬁ
Conveyor
‘Pos1 | |P032 ‘ Pos3 Pos4 Side v

Abbildung 33: Trainingsstation Bosch

2.6.3.2 Workshop-Durchfiihrung und Ergebnisse
Der Workshop wurde anhand folgender Vorgehensweise durchgefiihrt:

Vorstellung und Diskussion des Leitfadens: Anhand eines Leitfadens wurde die ZuMaTra-Mo-
dellierungsmethodik und Vorgehensweise vorgestellt und diskutiert. Als Beispiel wurde die
Sortier- und Stempelanlage mit Fokus auf den Stempel gewahlt. Der Leitfaden kann im An-
hang (Anhang CD: Leitfaden ZuMaTra) entnommen werden.

Gemeinschaftliche Erarbeitung der Anwendungsbeispiele: Das zuvor definierte Anwendungs-
beispiel wurde anhand von definierten Aufgaben einzeln von den Workshop-Teilnehmern er-
arbeitet. Neben der Aufgabenstellung wurde den Teilnehmern eine Spezifikation der Code-
Schnipsel zur Verfiigung gestellt (Anhang CD: Zusatzmaterial Workshop Bosch).

Durchfiihrung der Testfélle an der Trainingsstation: Die Testfalle wurden an der Trainingssta-
tion erprobt.

Diskussion der Ergebnisse: Die Ergebnisse des Workshops wurden in einer Fokusgruppe dis-
kutiert. Hierbei wurde zum einen auf die Anwendbarkeit der Vorgehensweise und Modellierung
allgemein, zum anderen auf die Verbesserung der Anwendbarkeit durch eine Verbesserung
der Werkzeugunterstitzung eingegangen.

Allgemeine Ergebnisse:

Insgesamt nahmen an dem Workshop 7 Experten teil. Davon waren 5 Anwender, 1 Kompo-
nentenhersteller und 1 Plattformentwickler. Die Schulung nahm ca. 1,5 Stunden in Anspruch,
die Erarbeitung und Durchfiihrung des Beispiels ca. 4 Stunden und die Expertendiskussion
ca. 45 min. Von den 7 Teilnehmern gab es eine 2er-Gruppe, es wurden also 6 Beispiele erar-
beitet. Von 6 Beispielen konnten 2 erfolgreiche Testlaufe durchflihren. Bei 2 weiteren war die
Zeit, auch aufgrund von Problemen mit dem Editor, zu knapp und bei den anderen war ein
Fehler an der Modellierung fir den Fehlschlag der Testfélle verantwortlich. Die Ursachen hier-
fir wurden in der Expertendiskussion vertieft.

45

2 Lésungsweg zur Erreichung des Forschungsziels

2.6.3.3 Ergebnisse der Expertendiskussion

Allgemein wurde festgehalten, dass das Weg-Zeit-Diagramm intuitiv und einfach erlernbar ist
und eine gute Uberschaubarkeit der Darstellung erlaubt. Auch die Ausdrucksméchtigkeit des
Weg-Zeit-Diagramms und die wahlbare Granularitat/Abstraktion wurden positiv aufgenommen
(ErfGllung der Anforderung A3).

Anforderungsbewertung durch die Experten:

Der Aufbau der Testfalle wurde als passend bewertet mit der Angabe der Init-, Abbruch- und
Uberprifungsroutinen als Code-Schnipsel (Randbedingung RB 1, RB 2 und RB 4).

Die generierten Testfalle — also die definierten Fehleroperatoren —wurden als sinnvoll und den
Anforderungen entsprechend eingestuft (A6 und A7). Damit Iasst sich die Abdeckung von mo-
dellierten Anforderungen und die Uberprifung dieser dokumentieren und nachweisen (A5).

Die automatische Generierung und automatische bzw. semi-automatische Durchflihrung
wurde als Effizienzsteigerung im Gegensatz zu aktuellen Vorgehensweisen bewertet.

Anforderungen fiir eine Weiterentwicklung der Notation, der Vorgehensweise und des
Editors

Um den Anwender besser bei der Erstellung zu unterstiitzen gib es einige allgemeine Anfor-
derungen, die durch eine adaquate Werkzeugunterstitzung erflllt werden sollten.

» Speichern unter; projektbezogener, standardmafiger Dateiname beim Speichern; But-
ton flr das Speichern

* Drucken und Screen-Shots

« Bei der Erstellung eines Elements, sollte dieses gleich angewahlt bleiben, damit des-
sen Eigenschaften im Eigenschafts-Editor bearbeitet werden kénnen

+ Das Léschen von Elementen war nicht immer fehlerfrei moglich
« ,Copy & Paste“-Funktionen fir die Modellierungselemente
« Sortierkriterien fur Aktionen und Objekte im Objektbaum

Neben der allgemeinen Kritik zum Editor wurden folgende Verbesserungspotentiale bei der
Modellierung mit dem Weg-Zeit-Diagramm festgehalten (siehe auch Abbildung 34):

» Bezuglich des Editors sind folgende Punkte zu verbessern
— Fangbereich fur , TimeLinePoints“ vergréRern
— Gruppierung und neue Anordnung von ,Lifelines“ ermoglichen
— Verschieben und Einfligen von Locations besser unterstiitzen, Schriftgrofie
— Messages verschieben ermdglichen
— Automatische Skalierung der Zeit (nach ,Duration Intervals®)
» Bezlglich der Modellierung/Notation wurden folgende Punkte aufgenommen

— ,Don‘t care-Zustande (,Statelnvariants® erméglichen)

Kommentar als zusatzliches Modellierungselement

Benennung von Locations ermdglichen
— Modularisierung und Kapselung besser unterstitzen/ermoglichen

» Wiederverwendung einzelner ,Lifelines®/ einer gruppierten Menge von
,Lifelines“ und Ermdglichen einer reinen Anzeige von ,Lifelines” ohne
Testfallgenerierung

Standardmafige Vorgabe einer Zeitachse

46

2 Lésungsweg zur Erreichung des Forschungsziels

!g Main Timing Sequence Settings
n 1 o 1 : «
JJ - E o 1 - \ i x IJJ;
Add Add Add Add Add Add Add Add Delete Generate
LifeLine Control Value State Invariant Timeline-Point = Duration Constraint Inverval Constraint IEC-Message Multi-Message element TestCase Table

ZuMaTra Y| Timing Sequence [X| | Timing Sequence._table | X|
Rules =T

PicOpen 5
4 Timing Diagrams ;" Benennung,
Timing Sequer S| GroRe

4 TestCase Tables

Timing Sequer, _8 0. 2s 0. 1s
4 Init . In }_; 2_1 .}_; l_i
Man:ua\ g N =
Semi-auto] ot . Fangbereich s
Auto %
4 Abort 3 .11
8 ig .
e 2 Skalierung |
xpected reaction || [&°] rl
None % ALSE @ L
- g0t KL S R

m Statelnvariant Element :

4 Diagrams B R o S efdeckcccccccccncnadecccagfmecncdeccnncacaan Variable StampUp
/ZuMaTra 7 Visible Name: Up
<,Timing Sequ Value : TRUE
L' Timing Sequ

i
i Neuanordnung Don't care e

\ Kapselung

7
N—_"

e

StempPressure : Real tampPos :

Vorgabe Zeitachse |

Abbildung 34: Verbesserung der Modellierung im Weg-Zeit-Diagramm

Von den Anforderungen wurden im Nachgang noch einige Punkte aufgenommen (griine Hak-
chen in Abbildung 34), wie die Einfuhrung von der Angabe von ,Statelnvariant®-Werten mit
,don’t care®. Dies hat den Vorteil, dass der Anwender spezifizieren kann, wann bestimmte
Zustande ggf. nicht relevant fir eine Testfallgenerierung sind.

Bezlglich der Testfallgenerierung wurde folgendes Feedback aufgenommen:

» Einflihrung eines zusatzlichen Fehleroperators ,&“ auf konstante ,Statelnvariant*-Ab-
schnitte.

+ Einfuhrung von ,Locked®-Variablen, fur die eine Fehlerinjektion explizit freigegeben
werden muss (sicherheitskritische Fehler bzw. Fehlerbehandlungen).

Durch den Fehleroperator werden Testfalle generiert, bei denen Verschrankungsbedingungen
Uberprift werden kdnnen und wurde bereits in dem Prototyp umgesetzt. Die ,Locked“-Variab-
len sollen fur sicherheitskritische Fehlerinjektionen gesetzt werden kénnen, um beispielsweise
bei kritischen Tests eine explizite Freigabe durch berechtigte Personen zu verlangen.

Zur Testtabelle wurde Folgendes festgehalten:
* Nachvollziehbarkeit Weg-Zeit-Diagramm — Testfalle/Testtabelle schwierig
— Symbolische Bezeichnungen in Testtabelle anzeigen/verwenden

— Doppelte Ansicht Weg-Zeit-Diagramm — Testtabelle: Optimale Lésung — bei An-
wahlen eines Testfalls wird dieser im Weg-Zeit-Diagramm visualisiert (wie in
Abbildung 35 dargestellt)

+ Testfalle die abgewahlt wurden ausgrauen, nicht komplett I6schen oder -1

+ Kommentieren der Testfélle ermdglichen

47

2 Lésungsweg zur Erreichung des Forschungsziels

‘ ‘ 1 ‘ : - ype od e O e e Lo aints

‘ ‘ =| | StateChangeBlock alue change tii L
k] o StateChangeBlock | Lowered := Visible Name 11
. = 2 FALSE e
<. i 115) - — A StateChangeBlock [Up := FALSE | Up value change time 09
e Visualisierung | __ . :
I Testfall StateChangeBlock | Abgewahlte ue change time 11
- e A z I |statechangeroree] Testfélle 09 1
. | Const ausgrauen
3 |Kommentieren Ip := TRUE 025 06

Staol P-1d S MissingSynchrono | 6000 :=.value 6000 va!ue change 01
usStateChange | at location L3 time
s — MissingSynchrono | In:= FALSE [Lowered value change 01
usConst time
2000 3 mSynchronisation e| Lowered and 6900 11
G — — 43;| values change time
6000 I—*’—. Lowered :=
. L I ; FALSE .

m » - " »

;
£
2
-
g
o
3
"

Abbildung 35: Parallele Ansicht Tabelle und Modellierung

Der Punkt der symbolischen Bezeichnung wurde in Folge noch innerhalb des Projekts umge-
setzt. Eine der wichtigsten Anforderungen fir eine Entwicklung zum Produkt muss mit der
Synchronisation des Weg-Zeit-Diagramms mit der Testtabelle hervorgehoben werden. 2 der
Testlaufe scheiterten an dieser fehlenden Funktion, da die Testtabelle bei einer Neu-Generie-
rung aus dem Weg-Zeit-Diagramm komplett neu generiert wird. Dadurch gehen bereits er-
ganzte Informationen in der Testtabelle vollstandig verloren, was einen erheblichen Mehrauf-
wand bedeutet.

Eine weitere erhebliche Verbesserung der Anwendbarkeit wurde einer engeren Integration mit
Programmierumgebungen prognostiziert. Der Import von Variablen bzw. das Einlesen von Va-
riablenlisten und Auswahl mit Drop-Down-MenUs in den Eigenschaftsbereichen wirde die Da-
tendurchgangigkeit erhdhen und dementsprechend Fehler bei der Spezifikation vermindern.

Zusammenfassend konnte durch den Workshop das Potential, die Machbarkeit des Ansatzes
und die Liicke zu einer Einflhrung in die Industrie eindeutig aufgezeigt werden.

2.6.4 Beantwortung eines Fragebogens zur Bewertung des Gesamtkonzepts

Beantwortung eines Fragebogens: Mittels eines Fragebogens wurden der Projektausschuss
befragt, inwiefern die ZuMaTra-Codeanalyse, Modellierungsmethodik und Vorgehensweise
die Testfallerstellung und den Testprozess allgemein verbessern kann. Der Fragebogen kann

48

2 Lésungsweg zur Erreichung des Forschungsziels

dem Anhang (Anhang CD: Fragebogen ZuMaTra) entnommen werden. Vom Projektaus-
schuss wurden 9 Fragebdgen mit Teilnehmern aus 7 Unternehmen beantwortet.

Die allgemeine Auswertung des ZuMaTra-Ansatzes im Vergleich zu aktuellen Vorgehenswei-
sen in den Unternehmen zeigt eine Verbesserung des Testprozesses auf allen Ebenen. Ins-
besondere die Erhéhung des Automatisierungsgrades bei der Durchfiihrung und Erstellung
von Testfallen zeigt die Erflllung der Anforderungen an den Ansatz.

Qualitatssicherung der Steuerungssoftware —

Automatisierungsgrad der Testfalldurchfiihrung —

Strukturierte Vorgehensweise fir Antriebsbausteinentests

<
Automatisierungsgrad der Testfallerstellung — \—|
/ :

Strukturierte Vorgehensweise flir Fehlerszenarientests —

AN

1 2 3 4 5 6

Strukturierte Vorgehensweise allgemein

—0—ZuMaTra-Ansatz —@— |st-Situation Unternehmen

Abbildung 36: Bewertung des ZuMaTra-Ansatzes im Vergleich zur aktuellen Vorgehens-
weisen - 1: voll erfiillt, 6: Giberhaupt nicht erfilit

Das Meinungsbild Gber die Notation des Weg-Zeit-Diagramms spiegelt die Erfahrungen wah-
rend der Machbarkeitsstudie und des Workshops wieder. Man sieht, dass die Fokusgruppe
die Abbildung diskreter Prozesse deutlich besser, als die Modellierung kontinuierlicher Pro-
zesse einschatzt. Die gute Bewertung der Verstandlichkeit und Erlernbarkeit der Notation kann
vermutlich auf die Verwendung und Anpassung bereits vorhandener Notationen in den Unter-
nehmen zuruckgefiihrt werden.

Bei der Codeanalyse sind die Ergebnisse ebenso tendenziell positiv. Die Anforderung der
Nachvollziehbarkeit von fehlerhaften Kontrollflusspfaden wird durch die einfache Visualisie-
rung von fehlerhaften Pfaden gut erflllt. Die Einschatzung, dass die Qualitatssicherung und
Uberpriifung von Ausfiihrungsrichtlinien noch nicht ausgereizt sind, zeigt jedoch einen weite-
ren Handlungsbedarf in diesem Bereich.

49

2 Lésungsweg zur Erreichung des Forschungsziels

Erleichterung der Testfallerstellung und -generierung
Softwareublicher Aufbau

Zeitsparende Erstellung

Sinnhaftigkeit der Fehlerszenarien

hus
—L |
Abbildung kontinuierlicher Prozesse ' y
Abstraktionsgrad
Abbildung diskreter Prozesse
Verstandlichkeit
Erlernbarkeit
1 2 3 4

Verbesserung der Qualitatssicherung
Fehlererkennung
Verstandnis

Uberpriifung der Ausfiihrungsrichtlinien

5 6

—@—Testfélle —@—Testfallgenerierung —@—Modellierung —@— Codeanalyse

Abbildung 37: Evaluierung des ZuMaTra-Ansatzes - 1: voll erfiillt, 6: Giberhaupt nicht
erfiillt

Neben den vorgegebenen Fragen konnten die Teilnehmer der Umfrage auch weiteres Feed-
back zu den Ansatzen und Teilansatzen geben.

2.6.4.1 Feedback und weitere Potentiale zur Codeanalyse

Zur Codeanalyse wurde hervorgehoben, dass ggf. nicht nur bestimmte Ausflihrungsrichtlinien,
sondern auch Programmiermuster eingehalten werden mussen. Dies stellt eine weitere Her-
ausforderung an Folgeprojekte. Weiterhin wurde hervorgehoben, dass es tendenziell immer
Pfade gibt, in denen bestimmte Regeln nicht gelten. Hier miissen Mechanismen zur Definition
von Ausnahmen und insbesondere eine Dokumentation dieser geschaffen werden. Die Visu-
alisierung des Codes als Kontrollfluss wurde auf3erdem fiir Bausteine mit begrenzter Komple-
xitat als hilfreich eingestuft. Der Umgang mit komplexeren Bausteinen birgt ein weiteres Un-
tersuchungspotential.

2.6.4.2 Feedback zum Test von Fehlerbehandlungsroutinen

Fir die bessere Einsetzbarkeit der Methodik wurde die Notwendigkeit der Datendurchgangig-
keit hervorgehoben. Es missen Schnittstellen und Austauschformate zu anderen Engineering-
Werkzeugen geschaffen werden, um Arbeiten wie die manuelle Ubertragung von Daten zu
vermeiden. Ein Beispiel fir ein solches Modellierungswerkzeug ist das EPLAN Engineering
Center.

Ein weiterer Hinweis zur Anwendbarkeit war, dass die Losung auch fur Siemens umgesetzt
werden misste, um ein weitere Anwender zu erreichen, da hier noch einige Unterschiede zur
CODESYS-Welt bestehen.

Fir den Test kontinuierlicher Systeme sind insbesondere Regler, wie auch in dem Beispiel
gezeigt, wichtig. Hier misste die Modellierung von Reglerverhalten genauer untersucht und in

50

2 Lésungsweg zur Erreichung des Forschungsziels

den Ansatz integriert werden. Ein weiteres Potential wird insbesondere bei der Simulation von
kontinuierlichen Systemen gesehen.

2.6.5 Zusammenfassung der Evaluierung

Durch die entwickelten Methoden und die mehrstufige Evaluierung durch Machbarkeitsnach-
weis, Workshop und Umfrage konnte gezeigt werden, dass die zu Beginn gesetzten Anforde-
rungen erflllt und die Randbedingungen eingehalten werden konnten.

Die Anforderungen und Randbedingungen sind im Folgenden noch einmal zusammengefasst.

A1: der Automatisierungsgrad der Testerstellung und —ausfiihrung muss méglichst hoch
sein.

A2: Durchfiihrbarkeit sowohl gegen eine Simulation als auch gegen die reale Maschine
A3: freie Wahl des Abstraktionsgrades bei der Modellierung

A4: die Neugenerierung von Testféllen und Anpassung von Modellen als Grundlage fiir die
Generierung muss mdéglich sein

Ab: Nachweis des Abdeckungsgrades der Anforderungen sowie der Dokumentation fiir den
Kunden

A6: Test von relevanten Fehlerszenarien
A7: Testfallgenerierung aus Weg-Zeit-Diagrammen
A8: optionale Verwendung der FMEA fiir die Priorisierung der Testfélle

A9: Die Codeanalyseregeln sollen entsprechend der aus den Unternehmen analysierten
Regeln und den Verriegelungsbedingungen méglich sein

RB 1: Alle Anwendungsbeispiele enthalten Routinen fiir eine Grundstellungsfahrt/ Refe-
renzpunktfahrt/ Reset.

RB 2: manuelle Eingriffe durch den Operator wéhrend der Testausflihrung miissen spezi-
fizierbar sein.

RB 3: Flir den Test relevanter Fehlerszenarien miissen Fehler entsprechend der unter-
suchten Fehlererkennungsmechanismen injiziert werden

RB 3.1: Zur Uberpriifung von Verriegelungsbedingungen muss der Kontrollfluss untersucht
werden

RB 3.2: Zur Uberpriifung von Fehlerbehandlungen von bestimmten Szenarien (Priifung Pa-
rametrierung, Priifung (Sensoren), Uberpriifung komplexes Signal und Sammelfehler) soll
eine anforderungs- bzw. modellbasierte Testfallgenerierung durchgefiihrt werden

RB 4: Tests zur Priifung von Fehlerbehandlungen kénnen aufgeteilt werden in:
* Fehlerindividueller Teil: Test der richtigen Fehlererkennung und Meldung
» Test der richtigen Fehlerbehandlung fiir verschiedene Fehlerbehandlungsklassen

RB 5: eine Abbruchroutine muss vorgesehen werden um undefinierte Zustdnde zu vermei-
den

Anforderung 1 wurde erflllt, indem insbesondere der Testerstellungsprozess so weit wie mdg-
lich automatisiert wurde. Die Modellierung des Gutverhaltens im Weg-Zeit-Diagramm ermdog-
licht die automatische Generierung zahlreicher Testfélle fur die Fehlerinjektion. Die Generie-

51

2 Lésungsweg zur Erreichung des Forschungsziels

rung von Test-Funktionsbausteinen aus dem Weg-Zeit-Diagramm und der Testtabelle ermdg-
licht eine nahtlose Uberfiihrung ausfiihrbarer Testfalle in die Programmierumgebungen. Die
Auswahl einer automatischen oder semi-automatischen Ausfiihrung ermdéglicht den Testern
volle Flexibilitat. Der Automatisierungsgrad der Testerstellung und —ausfiihrung konnte auch
laut Ergebnis der Umfrage (Abbildung 36: Bewertung des ZuMaTra-Ansatzes im Vergleich zur
aktuellen Vorgehensweisen - 1: voll erfillt, 6: Gberhaupt nicht erfllltAbbildung 36) erheblich
erhoht werden und in dem Workshop mit den Unternehmen konnte die Durchfihrbarkeit der
Tests gegen die reale Maschine gezeigt werden (A2).

Auf die Einhaltung der Anforderungen A3, A4, A7 und A8 wurde bereits inharent wahrend der
Entwicklung der Konzepte geachtet. Die Generierung von Testfallen aus Weg-Zeit-Diagram-
men, in denen das Gutverhalten modelliert ist, wurde konzipiert und evaluiert. A4 wird soweit
abgedeckt, dass das Weg-Zeit-Diagramm stets gedndert und neugeneriert werden kann. Ver-
besserungspotential bietet noch die Beibehaltung der bereits spezifizierten Daten in der Test-
tabelle um diese Anforderung vollstandig zu erfillen. Auch die Wahl des Abstraktionsgrades
wurde von den Teilnehmern der Evaluation als gut bewertet.

Die Erstellung der FMEA wurde als optionaler Teil in den Ansatz integriert (A8). Ein kurzer
Leitfaden zeigt, wie Fehler und Fehlerbehandlungen nach Risiko priorisiert werden kdénnen.
Eine hohe Priorisierung kann in die konzipierte Testtabelle durch die manuelle Priorisierung
Ubertragen werden. Die manuelle Priorisierung erlaubt es dem Tester alternativ auch nach
Erfahrungswerten zu priorisieren.

Weiterhin wurde bei der Generierung der Testfallen die nach den Randbedingungen RB 1, RB
2, RB 4 und RB 4 vorgegebene Struktur eingehalten, welche nach der Fragebogenevaluation
auch nochmals als sinnvoll bestatigt wurde eingehalten. Die Machbarkeit gegen eine Simula-
tion wurde nicht gezeigt, ware aber grundsatzlich durch einen Austausch der Maschine gegen
eine Simulation denkbar. Der Nachweis des Abdeckungsgrades der Anforderungen sowie der
Dokumentation (A5) konnte anhand der Aufgabenstellung und Abdeckung der Testfalle aller
Anforderungen in dem Workshop illustriert werden. Die nach RB 3.2 relevanten Fehlerszena-
rien (A6) wurden alle im Ansatz bericksichtigt und in der Umfrage noch einmal bestatigt (Ab-
bildung 37). Die Regeln welche sich zur Codeanalyse eignen (RB3.1) wurden weiterhin imple-
mentiert und Uberprift.

2.7 Ergebnistransfer in die Wirtschaft

Ein zentrales Ziel des Forschungsvorhabens war die wissenschaftlich fundierten Resultate an-
wenderbezogen aufzubereiten. Fir einen reibungslosen und stetigen Informationsfluss be-
durfte es verschiedener Maflnahmen bereits wahrend der Projektlaufzeit. In regelmaRigen
Projekttreffen werden die Projektfortschritte den Mitgliedern des Projektbeirats und weiteren
interessierten Unternehmen vorgestellt und die Ergebnisse vor dem Hintergrund der Praxiser-
fahrung der Industrie reflektiert. Die Verdffentlichungen von Ergebnissen auf einschlagigen
Konferenzen (IFAC World Congress) waren, ebenso wie die 6ffentliche Prasentation der Zwi-
schen- und Endergebnisse, obligatorisch. Dartiber hinaus wurden die Projektergebnisse und
Konzepte auf einer Messe (SPS/IPC/Drives Kongress) vorgestellt. Auf dem regelmaRig statt-
findenden Automation Symposium der Forschungsstelle, an dem ca. 60 Teilnehmer gréften-
teils aus der industriellen Praxis teilnehmen, dem auch Workshops vorausgehen, wurden zu-
dem die Ergebnisse und Konzepte als Prasentation bzw. Demonstration mit den Laboranlagen
des Lehrstuhls vorgestellt. Zusatzlich fand ein Workshop im Rahmen des Projekts mit den
Mitgliedern des Projektausschusses statt, der die Ergebnisse des Forschungsvorhabens an
Interessensvertreter der Industrie transportiert. Die Anwendung des Software-Funktionsmus-
ters wurde in einem Leitfaden festgehalten und ist unter http://zumatra.ais.mw.tum.de/ veroéf-
fentlicht.

Die Forschungsstelle ist darauf bedacht die neuesten wissenschaftlichen Erkenntnisse und
deren praktischen Nutzen auch Uber das Projektende hinaus weiter zu vermitteln. Neben dem
starken Industriebezug der Forschungsstelle wurde und wird weiterhin ein Wissenstransfer an
die angehenden Ingenieure Uber die universitaren Lehrveranstaltungen Softwareentwicklung

52

2 Lésungsweg zur Erreichung des Forschungsziels

fur Ingenieure 1 & 2 erfolgen. Dadurch werden ,Berufseinsteiger” friihzeitig mit den neuesten
Erkenntnissen ausgebildet und kbnnen somit neue Impulse setzen. Die wissenschaftlich erar-
beiteten Methoden flieRen nach Projektende in Dissertationen und dokumentieren die Rele-
vanz des Forschungsvorhabens.

Eine Ubersicht (iber die realisierten und weiterhin geplanten MalRnahmen zum Ergebnistrans-
fer ist in Tabelle 4 dargestellt. Die Workshops stellten sich als besonders erfolgreich fir den
Ergebnistransfer heraus weshalb das Schulungskonzept, welches am 06.02.2015 erstmalig
umgesetzt wird, als besonders erfolgsversprechend erachtet wird.

Tabelle 4: MaBnahmen zum Ergebnistransfer

MafRnahme Ziel Rahmen Datum
10.05.2012,
. . . 23.10.2012,
Diskussionsforum Fortgchnttsbenchte, D'S' 16.07.2013,
. kussionen und Koordina- .
zusammen mit . . . PA-Sitzungen | 03.12.2013,
tion weiterer Schritte, In-
PA formationsverbreitun 12.03.2014,
9 22.05.2014,
23.07.2014,
Studierende friihzeitig an Winterse-
: Semester- mester
Vergabe neue Erkenntnisse heran-
; o und Ab- 2013/2014,
studentischer fuhren, Umsetzung und . .
. : . schlussarbei- Winterse-
Arbeiten Evaluierung von Teilas-
ekten ten mester
P 2014/2015
Ubernahme der Die Wissensweitergabe Aktualitat der
Ergebnisse in als Multiplikator, Basis fir Lehrveran- Sommerse-
Wahrend der universitare Lehr- | neue Mitarbeiter und Ar- mester 2012
; . staltungen
Projektlauf- veranstaltungen beiten
zeit . . .
Verbreitung der Zwi- Automation
(W 2R = Vortrag /. schenergebnisse, Evalu- Symposium 21.02.2012
30.09.2014) Demonstration :
ation des Konzepts 2012
Verbreitung der Zwi-
Vortrag / . . ZVEI| Herbst-
. schenergebnisse bei : 03.09.2013
Demonstration ZVEI-Mitgliedern sitzung
01.08.2012,
10.10.2012,
03.09.2013,
Vortrag / Einzelworkshoos mit Unternehmen | 01.10.2013,
Demonstration/ Un ternehmre)n Projektaus- 08.10.2013,
Diskussion schuss 10.10.2013,
24.01.2014,
05.02.2014,
30.09.2014
Vortrag / Verbreitung der
Demonstration/ Zwischenergebnisse, IFAC World 29.08.2014
Verdffentlichung | Evaluation des Konzepts
Anfertigen eines schriftli-
chen Berichts mit den
Abschlussveran- Forschungsergebnissen AiF, PA-Sit- 11.11.2014
staltung fir PA und AiF, Prasenta- zung T
Nach tion der Ergebnisse ge-
Abschluss genlber PA

53

2 Lésungsweg zur Erreichung des Forschungsziels

der Projekt- Vortrag/ Verbreitung der SPS IPC Diri- 2511.-
laufzeit Demonstration Ergebnisse ves 27.11.2014
Leitfad_en und Verbreitupg der Website 12.2014
Editor Ergebnisse
Vortrag/ Verbreitung der é urtr?rgztif; 05.02.2015/
Schulung Ergebnisse ymp 06.02.2015
und Schulung
.. . Verbreitung der Verteiler des
Veréffentlichung Ergebnisse ZVE 02.2015
Workshop mit 10
Vertretern von Verbreitung der Projekt- | Unternehmen
KMU des ergebnisse, Evaluation Projektaus- 13.10.2014
Maschinen-/ des Konzepts schuss
Anlagenbaus
Dokumentation der wis-
Dissertation senschaftllggsn Aspekte 2015
Forschungsvorhabens

54

3 Nutzen fir KMUs

3 Nutzen fiir KMUs

Die Zuverlassigkeit einer Maschine bzw. Anlage ist in Zeiten von weltweit vernetzen Produkti-
onssystemen, die nach just-in-time oder build-to-order Konzepten zeitlich voneinander abhan-
gig sind und keine Pufferzeiten fir Maschinenausfalle mehr einplanen, ein sehr wichtiges Ver-
kaufskriterium. Daher bietet die nachweisbare Zuverlassigkeit von Maschinen und Anlagen bei
gleichzeitig nur sehr geringen Mehrkosten fir einen automatisierten Testprozess ein klares
Differenzierungsmerkmal und sichert besonders die Wettbewerbsfahigkeit kleiner und mittel-
standischer Maschinen- und Anlagenbauer.

Steuerungssoftware wird entweder direkt vom Maschinen- und Anlagenbauer entwickelt und
getestet oder von einem Dienstleister. Der Maschinen- und Anlagenbau ist in Deutschland
traditionell mittelstdndisch gepragt (wie auch im projektbegleiteten Ausschuss vertreten).
Dienstleister in diesem Bereich sind in der Regel kleine Unternehmen. Sowohl Maschinen-
und Anlagenbauer als auch Dienstleister sind einem hohen Kosten- und Zeitdruck ausgesetzt
bei gleichzeitig hohen Qualitdtsanforderungen. Durch die bessere Unterstitzung systemati-
scher Software-Tests wird eine kontinuierliche Steigerung der Softwarequalitat erreicht. Typi-
sche Fehler kdnnen projektibergreifend analysiert und systematisch vermieden werden.
Langfristig wird ein insgesamt steigendes Qualitatsniveau bei der Softwareentwicklung er-
reicht. Im Vergleich zum Nutzen und zur Steigerung der Wettbewerbsfahigkeit ist der aufzu-
bringende personelle Aufwand zur Anwendung der angestrebten Forschungsergebnisse als
gering zu betrachten. Durch die angestrebte erhebliche, quantifizierbare Qualitatssteigerung
der Steuerungssoftware und damit auch der gesamten Maschine bzw. Anlage bei einem
gleichzeitig nur geringen Mehraufwand fir die Anwendung der Testautomatisierung wird die
Wettbewerbsfahigkeit deutscher Maschinen- und Anlagenbauer erheblich gesteigert und lang-
fristig gesichert.

Neben der Verbesserung der Steuerungssoftware kdnnen Unternehmen die angestrebten For-
schungsergebnisse direkt in Form eines Produkts umsetzen. Fur den Bereich der Automati-
sierungstechnik lassen sich kaum Ansatze fir den automatisierten Test von Steuerungssoft-
ware finden. Daher wiirde ein solches Produkt einen hohes Innovationspotential bieten. Neben
dem eigentlichen Produkt kann eine Vielzahl von abgestimmten Dienstleistungen angeboten
werden. Die Entwicklung eines marktfahigen Produkts kann ab sofort erfolgen. Idealerweise
durch oder in Kooperation mit Herstellern einer Programmierumgebung flr Steuerungen
und/oder Komponentenherstellern. Durch die Zusammenarbeit der KMUs von Maschinen- und
Anlagenherstellern als auch Anbietern von Automatisierungslésungen innerhalb des Projekts,
konnten die Anforderungen an ein solches Produkt insbesondere wahrend der Evaluations-
workshops ermittelt werden.

55

4 Zusammenfassung und Ausblick

4 Zusammenfassung und Ausblick

In dem Projekt ZuMaTra konnte eine umfassende Vorgehensweise von der Modellierung tber
die Testfallgenerierung bis hin zur automatisierten Durchfihrung von Testfallen entwickelt wer-
den. Durch eine Analyse im Industrieumfeld im Bereich der Fertigungstechnik konnten die we-
sentlichen Anforderungen und Randbedingungen fir einen automatisierten Test von Fehler-
behandlungsroutinen ermittelt werden. Aufbauend auf den ermittelten Anforderungen wurde
ein Ansatz fiir die modellbasierte Generierung von Testfallen zur Uberpriifung von Ausnahme-
situationen entwickelt.

Durch den modellbasierten Ansatz kdnnen aus angepassten Weg-Zeit-Diagrammen, in wel-
chen das Gutverhalten modelliert wird, mit Hilfe von in dem Projekt definierten Fehleroperato-
ren, welche realistische Fehler der Fertigungstechnik abbilden, Testfalle generiert werden.
Testtabellen, welche die einzelnen Testfalle auflisten dienen zur Erganzung von Informationen
welche den Testfall ausfiihrbar machen. Ein Testfall testet die Reaktion der Maschine oder
Anlage auf ein bestimmtes Fehlerszenario wie beispielsweise den Ausfall eines Endlagen-
sensors. Eine Import in Programmierumgebungen per PLCopen XML sichert die Datendurch-
gangigkeit und ermdglicht die direkt Ausfihrung der generierten Testfalle.

Die Evaluation mit zwei Beispielen aus der Industrie von Robert Bosch und
Harro Héfliger ergab, dass die Vorgehensweise die Anforderungen aus der Industrie fir eine
effiziente Testfallgenerierung und automatisierte Testdurchfiihrung fir diskrete Prozesse voll
erfullt. Die Nutzung des Weg-Zeit-Diagramms als Grundlage fiir die Testfallgenerierung erfullt
die wesentlichen Kriterien der schnellen Erlernbarkeit und guten Anwendbarkeit bei niedrigem
Aufwand durch eine adaquate Abstraktion des Maschinen-Modells. Diese Faktoren fiihren
malgeblich dazu, dass alle Voraussetzungen fur eine niedrige Einfihrungsbarriere des An-
satzes in die Industrie gegeben sind. Der Ansatz kann wesentlich zur Erhéhung der Effizienz
bei der Qualitatssicherung bzw. zur Erhéhung der Testabdeckung beitragen. Fur kontinuierli-
che Prozesse konnte der grundsatzliche Nachweis der Machbarkeit erbracht werden, ein
Nachweis bzw. eine Anpassung des Ansatzes auf die Anforderungen, die solche Prozesse mit
sich bringen, steht jedoch noch aus. Insbesondere was den Test von Reglerbausteinen an-
geht, gibt es noch Forschungsfragen, wie die Eignung von Modellen fiir einen Testansatz und
die Umsetzung einer Testfallgenerierung auf Basis dieser Modelle.

Auch bei der Codeanalyse konnte gezeigt werden, dass die statische Analyse wesentlich zur
Qualitatssicherung beitragen kann. Insbesondere wurden jedoch noch weitere Handlungsbe-
darfe was den Umgang mit der Komplexitat beispielsweise in Form geeigneter Visualisierun-
gen, der Untersuchung von Programmiermustern betrifft aufgedeckt, die in einem Folgeprojekt
des Lehrstuhls bearbeitet werden sollen.

Eine weitere wichtige Fragestellung ergab sich aus der Untersuchung zur Testfallselektion. Da
der Projektausschuss den grundsatzlichen Einsatz der FMEA zur Testfallselektion als zu auf-
wandig eingestuft hat, ware zu untersuchen welche Methoden und Kriterien bei einer automa-
tisierten Selektion geeignet und einsetzbar waren.

Das Software-Funktionsmuster der ZuMaTra-Vorgehensweise, umgesetzt durch einen Editor,
und die Verdéffentlichung unter davon hitp://zumatra.ais.mw.tum.de/ ermdglicht Unternehmen
die Vorgehensweise direkt in lhrem Unternehmen einzusetzen und zu erproben. Durch den
Workshop, bei dem die Vorgehensweise erprobt wurde, konnte auRerdem gezeigt werden,
welche Anforderungen fiir die Unterstitzung der Vorgehensweise durch Software-Engineering
Werkzeuge noch erfiillt werden mussen. Insbesondere sind hier die Datendurchgangigkeit zu
anderen Engineering-Werkzeugen und die engere Integration und Synchronisation zwischen
Testtabelle und Weg-Zeit-Diagramm hervorzuheben.

56

5 Anhang

5 Anhang

5.1 Literaturverzeichnis

[AAA+90]

[ArCr10]

[AHM+08]

[ALR+04]

[APR+13]

[ArBi07]

[AVF+01]

[BGG+05]

[CuR005]

[CMS98]

[EKF+09]

[EmNi08]

[FBO5]

[HKV+11]

[HTI97]

[HUFr086]

[HWO+10]

[IECO03]

Arlat, J., Aguera, M., Amat, L., Crouzet, Y., Fabre, J.-C., Laprie, J.-C., Martins, E.,
Powell, D.: Fault injection for dependability validation: a methodology and some ap-
plications, IEEE Trans. Softw. Eng., Vol. 16, Nr. 2, S. 166-182, 1990

Arlat, J., Crouzet, Y.: Physical Fault Models and Fault Tolerance, Models in Hard-
ware Testing, Frontiers in Electronic Testing, Springer Netherlands, Vol. 43, S. 217-
255, 2010

Ayewah, N., Hovemeyer, D., Morgenthaler, J.D., Penix, J., Pugh W.: Using Static
Analysis to Find Bugs, /EEE Softw., Vol. 25, Nr. 5, S. 22-29, 2008

Avizienis, A., Laprie, J.-C., Randell, B., Landwehr C.: Basic Concepts and Taxonomy
of Dependable and Secure Computing, IEEE Transactions on Dependable and Se-
cure Computing, Vol. 1, Nr. 1, S. 11-33, 2004

Angerer, F., Prahofer, H., Ramler, R., Grillenberger, F.: Points-to analysis of IEC
61131-3 programs: Implementation and application, in /EEE Int. Conf. Emerg. Tech-
nol. Fact. Autom., S. 1-8, 2013

Artho, C., Biere, A.: Combined Static and Dynamic Analysis, Electron. Notes Theor.
Comput. Sci., Vol. 131, S. 3-14, 2005

Aidemark, J., Vinter, J., Folkesson, P., Karlsson, J.: GOOFI: generic object-oriented
fault injection tool, Proc. Int. Conf. on Dependable Syst. and Networks, IEEE Com-
put. Soc., S. 83-88, 2001

Baraza, J.C., Gracia, J., Gil, D., Gil, P.J.: Improvement of fault injection techniques
based on VHDL code modification, 70th IEEE Int. High-Level Design Validation and
Test Workshop, IEEE, S. 19-26, 2005

Cunning, S., Rozenblit, J.: Automating test generation for discrete event oriented
embedded systems, Springer, 2005

Carreira, J., Madeira, H., Silva, J.G.: Xception: Software Fault Injection and Monitor-
ing in Processor Functional Units, Dependable Computing and Fault Tolerant Sys-
tems 10, S. 245-266, 1998

Ebenhofer, G., Kerbleder, G., Fritsche, J., Strasser, T.: Fokus auf Online-Monitoring
und Debugging, Computer & Automation, 12 Nov. 2009

Emanuelsson, P., Nilsson, U.: A Comparative Study of Industrial Static Analysis
Tools, Electron. Notes Theor. Comput. Sci., Vol. 217, S. 5-21, 2008.

Frey, G., Baniy, M.: Systematisches Re-Engineering bestehender Steuerungspro-
gramme auf der Basis formaler Beschreibung. SPS/IPC/Drives, Nirnberg, Nov.
2005

Hametner, R., Kormann, B., Vogel-Heuser, B., Winkler, D., Zoitl, A.: Test case gen-
eration approach for industrial automation systems, The 5th International Confer-
ence on Automation, Robotics and Applications, S. 57-62, Dec. 2011

Hsueh, M.-C., Tsai, T.K,, lyer, R.K.: Fault Injection Techniques and Tool, Computer,
Vol. 30, Nr. 4, S. 75-82, Apr. 1997

Hussain, T., Frey, G.: UML-based Development Process for IEC 61499 with Auto-
matic Test-case Generation, IEEE Conference on Emerging Technologies and Fac-
tory Automation, 2006. ETFA'06, S. 1277-1284, 2006

Hametner, R., Winkler, D., Ostreicher, T., Biffl, S., Zoitl, A.: The Adaptation of Test-
Driven Software Processes to Industrial Automation Engineering, IEEE International
Conference on Industrial Informatics (INDIN), S. 921-927, 2010

IEC: International Electrical Commission, IEC 61131 Programmable Controllers -
Part 3: Programming Languages, 2003.

57

5 Anhang

[Jo78]
[KCJ11]

[KHC+99]

[KHDO8]

[KoVo11]

[KTV12]

[LDO9]

[Mo00]

[OMO9]

[0t08]
[PAC+12]

[RU07]

[SCW+11]

[StEr08]

[SEK+09]

[SKV00]

[SIVu05]

[SVE+10]

[Tal4]*

[TeComO06]*

Johnson, S.C.: Lint, a C Program Checker, Bell Laboratories, 1978

Kumar, B., Czybik, B., Jasperneite, J.: Model based TTCN-3 testing of industrial au-
tomation systems — First results, IEEE Conference on Emerging Technologies and
Factory Automation, IEEE, S.1-4, 2011

Kim, Y., Hong, H., Cho, S., Bae, D. Cha S.: Test Cases Generation from UML State
Diagrams, IEE Proceedings - Software, Vol. 146, No. 4, S. 187-192, Aug. 1999

Krause, J., Herrmann, A., Diedrich, C.: Test case generation from formal system
specifications based on UML State Machines, atp international, 2008

Kormann, B., Vogel-Heuser, B.: Automated Test Case Generation Approach for PLC
Control Software Exception Handling using Fault Injection, [IECON 2011 - 37th An-
nual Conf. of the IEEE Ind. Electronics Soc., IEEE, S. 365-372, 2011

Kormann, B., Tikhonov, D., Vogel-Heuser, B.: Automated PLC Software Testing us-
ing adapted UML Sequence Diagrams, 14th IFAC Symposium of Information Control
Problems in Manufacturing, Bucharest, Romania, S. 1615-1621, 2012

logi.DIAC: Test Driven Automation und Condition Monitoring in der Systemumge-
bung logi.cals, 2009

Montenegro, S.: Fehlertoleranz und Sicherheit, Workshop "Software-Entwurf fiir Kfz-
Steuergeréate und komplexe eingebettete Systeme”, Erfurt, 24. / 25., Okt., 2000

On-the-fly-Migration und Sofort-Inbetriebnahme von automatisierten Systemen
(OMSIS), http://www.vdivde-it.de, abgerufen 2009

Otto, A.: Der Weg zum sicheren Funktionsbaustein, SPS-MAGAZIN SPSS, 2008

Powell, D., Arlat, J., Chu, H.N., Ingrand, F., Killijian, M.: Testing the Input Timing
Robustness of Real-Time Control Software for Autonomous Systems, 9th European
Dependable Computing Conf., IEEE, S. 73-83, May 2012

Russ, M.: Virtueller Funktions-Prifstand flr softwareintensive mechatronische Pro-
dukte, Dissertation Technische Universitat Munchen, Sierke Verlag, 2007,

Sung, A., Choi, B., Wong, W.E., Debroy, V.: Mutant generation for embedded sys-
tems using kernel-based software and hardware fault simulation, Inform. and Soft-
ware Technology, Elsevier B.V., Vol. 53, Nr. 10, S. 1153-1164, Oct. 2011

Stetter, R., Erben, M.: Automatisches Testen bei SPS-Steuerungssoftware, atp-Spe-
cial Steuerungstechnik aktuell, 2008

Seitz, M., Ehret, V., Kiefer, M., Ziegler, A., Kruschitz, E., Usselmann, E.: Automati-
sches Testen von Automatisierungssystemen, http://www.automatisierungs-re-
gion.de, 2009

Schludermann, H., Kirchmair, T., Vorderwinkler, M.: SOFT-COMMISSIONING:
HARDWARE-IN-THE-LOOP-BASED VERIFICATION OF CONTROLLER SOFT-
WARE, Proc. of the 2000 Winter Simulation Conf., S. 893-899, 2000

Schlingloff, B.-H., Vulinovic, S.: Zuverlassigkeitspriifung eingebetteter Steuergerate
mit modellgetriebener Fehlerinjektion. Simulations- und Testmethoden fiir Software
in Fahr, Berlin, 2005

Svenningsson, R., Vinter, J., Eriksson, H., Térngren, M.: MODIFI: a MODel-imple-
mented fault injection tool, Computer Safety, Reliability, and Security, Lecture Notes
in Computer Science, Vol. 6351, S.210 — 222, 2010

Tanz, S.: Konzeption und Implementierung eines Ansatzes fur die Codeanalyse von
IEC 61131-3 Funktionsblockdiagrammen. Bachelorarbeit am Lehrstuhl fir Automa-
tisierung und Informationssysteme, Technische Universitat Minchen, 2014.

Testfallcompiler fir den Funktionstest eingebetteter Software. Geférdert aus Haus-
haltsmitteln des BMWi Gber die AiF (AiF-FV-Nr. 13660 N/1), 2004-2006, geleitet von
AIS

58

5 Anhang

[TTCN3]
[VBR+07]

[YRL+03]

[ZAV04]

TTCNS3: ETSI ES 201 873-6 V3.2.1, Feb. 2007

Vinterl, J., Bromander, L., Raistrick, P., Edlerl, H.: FISCADE - A Fault Injection Tool
for SCADE Models, 3rd Inst. of Eng. and Technology Conf. on IET, S. 1-9, 2007

Yuste, P., Ruiz, J.C., Lemus, L., Gil, P.: Non-intrusive Software-Implemented Fault
Injection, Dependable Computing, Springer Berlin Heidelberg, S. 23-38, 2003

Ziade, H., Ayoubi, R., Velazco, R.: A Survey on Fault Injection Techniques, The Int.
Arab J. of Inform. Technology, Vol. 1, Nr. 2, S. 171-186

* Veroffentlichungen von Mitarbeitern der Forschungsstelle

5.2 Abbildungsverzeichnis

Abbildung 1: Struktur des projektbegleitenden AusSChUSSES...........cccoeeeiiiiiiiiiiiiiiiiieeeeiieeia, 4
Abbildung 2: Projektplan (Laufzeit des Projektes 01.01.2012 — 30.09.2014) ..., 7
Abbildung 3: Teilnehmer der Umfragec.uvveiiiiiiii e 8
Y Y o] o] o [0 g o IR Sl =T (o] PSPPSR 9
Abbildung 5: Tests nach EntwicklungSphase................uuuiiiiiiiiiiiiiiiii 9

Abbildung 6: Bewertung der Moéglichkeit zur manuellen und iterativen Verfeinerung der Tests.

resultierende VEerwaltUNg..........ooooeiiiiiiiii e e e e e e e e e e e e eenannaas 10
Abbildung 8: Bedeutung der Dokumentationccooiiiiiiiiiiiiicc e 10
Abbildung 9: Relevanz der Simulation des Bedienerverhaltens und des Werkstlicks 10
FaX o] o}{ o [8] o T 0 N =T 4 = IO PPN 11
Abbildung 11: Informationsquellen zur Testfallgenerierungcccccooviiiieiiiiiiiiiieee 11
Abbildung 12: Lokalisierung typischer Fehlerartencccccoii . 12
Abbildung 13: Informationen der Werkzeuge fiir die Komponentenbeschreibung................. 13
Abbildung 14: Fehlerbehandlung von Steuerungssoftware..........ccccccoo . 14
Abbildung 15: Fehler die von der Steuerungssoftware behandelt werden 15
Abbildung 16: FehlererkennungsmechaniSMeNccoiiiiiiiiiiiiiiiie e e 16
Abbildung 17: Fehlerbehandlung ..o 17
Abbildung 18: Grundsatzliche Vorgehensweise bei der statischen Codeanalyse von ST-Code
... 23
Abbildung 19: Verschiedene Darstellungsweisen des Codescccoeveeiiiiiiiiiiiicciiiieeeeeeeeeas 24
Abbildung 20: ZUMaTra-VOrgehenNSWEISE............uuuiuiiiiiiiiiiiiiiiiie ettt e e e e e 25
Abbildung 21: Das Weg-Zeit-Diagramm mit den Modellierungselementen 26
Abbildung 22: Testtabelle zur Vervollstandigung der Testfalle............occcoeieiiiiiiiicc e, 31
Abbildung 23: Beispiel fir eine FMEA (ausflihrlichere Beschreibung siehe Anhang CD: FMEA
[T 11 7= o =T o SR RPR 33
Abbildung 24: Aufbau der Testfalle (links) und semi-automatische Ausfiihrung der Testfalle
(=T 1€ S 34
Abbildung 25: Dokumentation der Testfalleoovueiiiiiii e 35
Abbildung 26: Uberblick liber das ZUMaTra-Plugin............c.ccoveeeeeeeeieeeeeeeeeeeeeeee e 36
Abbildung 27: Ubersicht ZUMATIa-PIUGINc..ooveieieeiee et 37
Abbildung 28: PLCopen XML-Import (CODESYS-/TwinCAT3-Format) in das ZuMaTra-Plugin
... 38
Abbildung 29: Regel 1 als Beispiel fiir die Regeln im ZuMaTra-Pluginccccooooooo, 40
Abbildung 30: Anwendungsbeispiel eines kontinuierlichen Prozesses...........c.ccccceeeieiiiiiinn, 41
Abbildung 31: Testfélle fir den Test von Antriebsfehlern.............cccccooiiiii e 43
Abbildung 32: Modellierung der Soll-Position des TANZEers ..., 44
Abbildung 33: Trainingsstation BOSCH...............uuiiiiiiiiiii 45
Abbildung 34: Verbesserung der Modellierung im Weg-Zeit-Diagramm............ccccceeveievenennns 47
Abbildung 35: Parallele Ansicht Tabelle und Modellierungccoviiiiiiiiieiiiiccee e 48
Abbildung 36: Bewertung des ZuMaTra-Ansatzes im Vergleich zur aktuellen Vorgehensweisen

- 1: voll erfullt,

6: Uberhaupt nicht erfiillt

5 Anhang

Abbildung 37: Evaluierung des ZuMaTra-Ansatzes - 1: voll erfullt, 6: Gberhaupt nicht erflllt 50
Abbildung 38: Metamodell des Weg-Zeit-Diagramms.............oovvviiiiiiiiiii e 60

5.3 Tabellenverzeichnis

Tabelle 1: Vergleich und Bewertung der existierenden Ansatze

Tabelle 2: Elemente des Weg-Zeit-Diagrammes zur Beschreibung des Gut-Verhaltens....... 26
Tabelle 3: Fehleroperatoren fir die Testfallgenerierung.ccco oo, 28
Tabelle 4: MaRnahmen zum Ergebnistransfer...............oioiiiiiii e, 53

5.4 Anhang A

Profile Diagram ZuMaTra [Timing Sequence Diagram] J «Kenum>> «Kenum>>
elementaryTypes MessageSort
&Metaclass>» > «Metaclass> asynchAction
OccurenceSpecification Interaction Fragment BOOL synchAction
*/\ +fragment BYTE asynchSignal
+coveredBy WORD
DWORD synchMethod
«Metaclass>» asynchMethod
Interaction -enclosinglInteractipn And-Message
0.1 «stereotype>>
1 finteraction 1 sensorValue
0..1 +interaction <<Metac|as.s>> < {required} | TimeLinePoint :
Statelnvariant . . .
+ T|m_eL|nePomtEIement
o *| +covered Variable : String
+||feI|ne* <Metackass> +coveredl VisibleName : String
Lifeline 1 Value :
2 [1 | +invariant elementaryTypes
<<stereotype>>|:| &Metaclass>>
ControlValueLifeline Constraint
Type : T
elementaryTypes
. «Metaclass> «Metaclass>
+HormaiGate «<stereotype> IntervalConstraint OpaqueExpression
«Metaclass>> SensorValuelifeline zr J7
Gate Type : elementaryTypes
TimeUnit : String «Metaclass>» <Metaclass>»
DurationConstraint ValueSpecification
+receiveEvent 1\I/ +specification M8 min
«Metaclass>> 0.1 «Metaclass>» Tmax «Metaclass>»
MessageEnd 0.1 Durationlinterval +mi Duration
0.1 rsendEvent J7
Amessage 0..1,[,+message 0.1 0.1 P e —
«Metaclass>»] Interval
Message
A A-message v
&Metaclass>» [« Kstereotype>>
NamedElement TimeLinePointElement
Kstereotype>> Kstereotype>> * loc : Location «enum>
IECMessage Ml[JI:/tIiMessa]ge KSIeTeolype>> Type : PointType PointType
Kind : MessageSort it Location X-Position : INT Primary
xPos : INT Derived
t: TIME Boundary

Abbildung 38: Metamodell des Weg-Zeit-Diagramms

60

5 Anhang

5.5 Verzeichnis Anhang CD
Auf der CD befinden sich folgende Folien und Materialien

Material und Leitfaden

e ZuMaTra Leitfaden Gesamt

e ZuMaTra Leitfaden Folien

¢ Aufgabenstellung Workshop Bosch

e Zusatzmaterial Workshop Bosch
Evaluation

e Fragebogen ZuMaTra
Veroffentlichungen

e Automation Symposium 2012: Testen in der Automatisierungstechnik

o SPS IPC Drives: Modellbasierter Fehlerinjektions-Applikationstest fir SPS-Programme
basierend auf dem CODESYS Test Manager

o Poster SPS IPC Drives

Danksagung
Gefordert durch: Diese Veroffentlichung entstand im Rahmen des IGF-Pro-
Bumdasmiidtertun jekts Steigerung der Zuverlassigkeit von Maschinen und An-
% fiir Wirtschaft lagen durch automatisiertes Testen von Fehlerbehand-
Ll lungsroutinen in der Steuerungssoftware (ZuMaTra). Das

IGF-Vorhaben 16906 N der Forschungsvereinigung

Elektrotechnik beim ZVEI e.V. wurde Uber die AiF im
3%1%61;3&5;12%555;%};1;;;?5 Rahmen des Programms zur Forderung der Industriellen

Gemeinschaftsforschung (IGF) vom Bundesministerium fur
Wirtschaft und Technologie aufgrund eines Beschlusses des Deutschen Bundestages
gefordert.

61

